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Solutions

(1) (a) If n =1, the result is true. Assume that the result is true for n and
let us prove it for n + 1. Since
n(n+1)
2

(n+1)(n+2)

1+2+-+n+(n+1)= 5 :

+(n+1)=

the result follows.
(b) If n =1, the result is true. Assume that the result is true for n and
let us prove it for n + 1. Since

n(n + 1)6(2n +1) b (n+1)?

_ (n+1D(n+2)(2n+3)
6 k)

12+22 4. 402+ (n+1)?=

the result follows.
(¢) If n =1, the result is true. Assume that the result is true for n and
let us prove it for n + 1. Since

n%(n+1)2

P42 tetn®+ (1) = ————+(n+1)°
(n+1)2%(n +2)?
= 1 ,
the result follows.
(2) We only need to observe that
nd = B+ 4+ 40 -3 +234. 4+ (n-1)?)
_ (n(n+1) 2_ (n—1)n 2
B 2 2 '
where we used the identity of Problem 1 (c).
. . . 1/3 2n 2n+1 1 .
(3) The given expression can be written as = | = — for each posi-
2\2 n(n+ 1

tive integer n.
(4) By using the formula of Problem 1 (a), we obtain

nn+1)

244+ 4+2n=21+2+---+n)=2- 5 =n(n+1).

(5) Since ;L:lj = "("2+1), it is enough to check that
- ; +1)
gy (et D)
(% St =t

We use induction. First of all, (x) is true for n = 1. Assume that (x) is
true for n = k; we will show that this implies that it is true for n = k4 1.
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Indeed, this implies successively

k+1 k

YV = YD+ (DM R+ 1)?

j=1 j=1
= R ey
B . k(k+1)
= (=1 ((k+ 1)2 - —2—>
B (k+1)(k +2)
— (_1)k+1_2—’

as required.

(6) This result can be proved by induction by observing that
@2l p2ntl o gondl | a2pon—l 2pon-1 4 pontl
= a2(am1 4 2y _p2nl(g? ),
(7) This result can be proved by induction by observing that
@intd _pinta _ gantd _ odpdn | odpdn pdntd
= a*(a®™ — b*") + b2 (a — b).
(8) This result can be proved using induction by observing that
a™tt — bt = o™ — "+ a"b — " = a"(a — b) + b(a™ — b™).
(9) We use induction as well as the relation

n+1 n

Yoidt=> i+ m+1)(n+1)
j=1 j=1

(10) Multiplying the given inequality (2n)! < 22"(n!)? by the trivial inequality
(2n+1) < 2%2(n+1)2, then using induction, one easily proves the inequality.

(11) Multiplying the relation (n + 1)3/n3 < (n + 1) (valid for n > 3) by the
given inequality n3 < n! allows one to use induction and thereby obtain
the result.

(12) This follows from

1+ =14+60)"1+6)>(1+n0)(1+0)=1+06+nb+nb?
> 14+ (n+1)6.

REMARK: This inequality is often called the Bernoulli inequality, being

attributed to Jacques Bernoulli (1654-1705).
(13) By using the induction hypothesis and by observing that
(1+6)"=1+6)(1+6)">(1+6)(1+nb+ @

>1+(n+1)0+

6?)
(n+1)n

02
2 )

the result follows.
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(14) We prove this result by induction. For n = 1, the result is true. Assume
that it is true for n and let us prove it for n + 1. Since

1 1
§0n+n3+ﬂn+n)=§Uﬁ+&#+3n+1+2n+®
) ‘
Zg(n3+2n)+n2+n+1

is an integer because of the induction hypothesis, the result follows.
(15) Let f(n) = 10" + 3 -4"*2 4+ 5. Since f(0) = 54 is divisible by 9 and since
fln+1) - f(n)

9 = 10" + 4™*? is an integer, the

for each integer n > 0,

result follows.
(16) The first equation is equivalent (after simplification) to

11
n—k k+1

which in turn is equivalent to n = 2k + 1, as was to be shown.
(17) (a) By adding the relations

k=0 k=0
we obtain
n 2n ~. /2n
=g (i) 53
Z;( (=1)%) f Z; ok

which yields the result.
(b) This follows essentially from part (a) and the fact that 5, (3") =
22n,

(18) Comparing the geometric mean with the arithmetic mean, we obtain

()17 < 1+2+---4n _ n(n+1) _ n+1,
n 2n 2
so that the result follows by raising each side to the power n.

(19) (Gelfand [13]) For n = 8 the result is true. Assume that k can be written
as a sum of 3’s and 5’s. Then, this sum contains one 5 (possibly many) or
none at all. In the first case, we replace a 5 by two 3’s. The new number
k + 1 then contains 3’s or 5’s. In the second case, there is at least three
3’s, and we can replace them by two 5’s. The new number k£ + 1 then
contains 3’s or 5’s. This proves the result.

(20) Let P, be the following proposition: the number of lines thus created by n
points for which no combination of three of these points are on a straight
line is n(n — 1)/2. Since two points determine a straight line and since
2(2-1)/2 = 1, P, is true. Assume now that P, is true for an integer
n > 2. If a new point is added to the collection of n points in such a way
that it cannot be on a straight line created by two of the points, then n
additional lines will thus be added and the new collection of n 4 1 points
will determine n(n —1)/2 +n = @ lines. The result then follows by
induction.
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(22
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) The proof is done by induction. If

11 1
1+ —=+ =+ +—F=>Vk
V2 V3 vk

then, since vk + 1 — vk < 1/vk + 1, the sum of these two inequalities
gives the result.

) Let
Rop_1 =1 +3+55+... + (2k - 1)%.
In light of Problem 1 (c), we know that
0 2
Spi=12 422433 +...+nd = (@) .
For n = 2k — 1, this last sum can be written as
Sop—1 = (P43 +. -+ (2k—1)%) + (22 +4°+ -+ (2k - 2)%)
(BP+3+ -+ (2k-1)3) +22(13+23+ 83+ + (k- 1)3)
= Rok—1+2Sk_1.
It follows that
2k — 1)(2k)\ ? k— k>
Rok—1 = Sak—1—23Sk1 = ((—%) -8 (( 5 ) >
= k%(2k—1)% —2k%*(k — 1)* = K*(2k* - 1),
as was to be shown.
) Using the Binomial Theorem, we have

(’I’L + 1)k+1 -1 = ((n + 1)k+1 _ nk+1) + (nk+1 _ (’l’l _ 1)k+1) 4.
+ (2k+1 _ 1k+1)

k+1 k+1}

16
_ z”:{]m <k+1>] +(k-2+1)jk_l+'_.
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Therefore, if S,.(n) is a polynomial of degree r+ 1 for each positive integer
r < k — 1, we may conclude, using induction, that Si(n) is a polynomial
of degree k + 1.

1 1
(24) (a) The required formula is H (1 - —) = —, since
i n

=2
ﬁ o123 n-2mn-1_1
by i/ 234 n-1 n n
1 1
(b) The required formula is 11—[2 (1 - ﬁ) = %, since
& 1 3 B-1DB+1) 4-1)@4+1)
H 1_22_ =5 o . e
=2
b-1)54+1) (n—2)n (n—1)(n+1) n+1
52 (n—1)2 n? o 2n
(25) Let S, be the given sum. Since
1=+ 1) - =G i )P i+ 1)

and since

i 1 1 1
(Z+i+1)E2—i+1) 2\2—i+1 24+4i4+1)°

we have

1 (<& 1 -~ 1
S, = = S . S
" 2(222—z+1 ;i2+z’+1>

i=1

n n 1
(Z 1)i+1 ;z’(i+1)~l—1)

1=

1
2
1 1
= Z(1—- ———),
2 n(n+1)+1

and the result follows.

(26) We will show that the choice (m,n,r) = (2,3,7), for which S = 41/42,
maximizes the sum .S in the sense that for any other choice (m,n,r), with
S < 1, we must have S < 41 So let us consider such a triple (m,n,r).
Wlthout any loss in generahty, we may assume that 2 <m <n <r. We
shall first show that m = 2. Indeed, if m > 3, then

s<i4ipl o4
37371 12742

Hence, m = 2. Let us now show that n = 3. If n > 4, we have

S< 1+1+1_19<4_1
=2 4 5 20 42

Hence, n = 3. It remains to show that » = 7. Two situations need to be
considered: 3 < r < 6 and r > 8. In the first case, we have

(R S S S
T2 '3 =2 36 7

—
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a contradiction. In the second case, we have

Szl 1+1<1+1+1:§<£

2 3 r~ 2 3 8 24 42

We may therefore conclude that r = 7, thus completing the proof.
The problem is equivalent to the combinatorial problem which consists in
distributing & balls in £ urns with the restriction that there must be at least
one ball in the first urn. We shall call upon the combinatorial theorem
according to which there are (’Zj) distinct vectors with (positive) integer
components satisfying the relation

T+ x4+ x40 =k
We then place the first ball in the first urn and distribute the £ — 1
remaining balls in the £ urns. The above result then yields
k+2¢-2
a0 = ("7E77)
as required.

We prove the first formula; the proof of the second formula is similar.
First of all, it is true for n = 1. Assume that it is true for each odd
number n < k, k odd. Since

2 92 | r2 2 2 k+2 2

P43 45"+ -+ k" + (k+2)" = 3 + (k+2)7,

the result will follow if we manage to show that

k+2 9 k+4
k+2) =
("5 rer2r=(*37)
or similarly that

(k;“l) - (’“;2) = (k+2)°.
But this relation is true, since
(k+4) 3 (k+2) _ k+4! (k+2)!

3 3 Wk+1)! 3 (k—1)!
(k2 ((k+3)(k+4) 1
3k —1)! ( k(k+1) )

(k+2)! (6k+12)
1k —1)! k(k+1)

- 52—2(% +12) = (k+2)%,

which completes the proof.

(CRUX, 1975). Since the sum of the elements of any subset cannot exceed
90+ 91 + - - - 4+ 99 = 945, the sum of the elements of the subsets of S can
be found amongst the numbers 1,2, ...,945. Since the set S contains 10
elements, we can form 2'© — 1 = 1023 nonempty different subsets. The
Pigeonhole Principle then allows us to conclude that there exist (at least)
two subsets having the same sum. By removing the elements which are
common to these two subsets, we obtain two disjoint subsets with the
same sum.
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There are exactly 50 possible remainders when we divide the numbers
by 50, and these remainders are the numbers: 0,1,2,..., 49. Since we
have 51 integers and only 50 possible remainders, it follows that using
the Pigeonhole Principle, there are at least two numbers amongst these
51 integers having the same remainder. Then, the difference of these two
integers has 0 as a remainder and is therefore divisible by 50.

For each n-th day of the year, let a,, be the total number of solved prob-
lems between the first day and the n-th day inclusively. Then a;,as,...
is a strictly increasing sequence of positive integers. Consider another
sequence by, by, ... obtained by adding 20 to each element of the preced-
ing sequence, that is b, = a, + 20, n = 1,2,... . The b,’s are strictly
increasing and are also all distinct. But for a period of eight consecutive
weeks (one needs to consider at least seven consecutive weeks) during the
year, the student cannot solve more than 11 -8 = 88 problems. Then, the
numbers a,, are located between 1 and 88 inclusively, while the b,’s are
between 21 and 108 inclusively. Since there are 56 days in eight weeks,
the concatenation of the two sequences gives

0,1,0,2,...,0,56,0,1+20,a2+20,...,a56+20,

which yields a total of 112 distinct integers all located between 1 and
108 inclusively. By the Pigeonhole Principle, at least two elements of the
concatenated sequence must be equal. One of the two must be in the first
half of the sequence and the other in the second part. Let a; and aj + 20
be these two integers. We then have ay — a; = 20, which implies that the
student must solve exactly 20 problems between the (j + 1)-th day and
the k-th day of the year.

Divide the surface of the table into squares of 3 inches by 3 inches. We
then have a total of 2000 squares. The diagonal of each of these squares is
v/18 inches long, that is approximately 4.25 inches. Therefore, a cylindri-
cal glass of diameter 5 inches will cover entirely any given square. Hence,
if we place seven marbles in each square, there will be a total of 14000
marbles on the table. Hence, by the Pigeonhole Principle, since we have
a total of 14001 marbles, one of these will contain at least eight marbles.
We easily see that the number N; of secants thus drawn is given by N, =
(g) Let N3 be the number of points of intersection of these secants. For
any group of points taken four by four, there is exactly two secants joining
the points that intersect inside the circle, so that N = ().

We are then ready to count the number of regions in terms of n. At
each drawn secant, the circle is divided into an additional region. At each
intersection point, the circle is divided into an additional region. The
solution is therefore given by

1+ N+ Ny = (Z)-}-(Z)-}-l,

which can also be written in the polynomial form n*/24—n3/4+23n2/24—
3n/4 + 1, provided that n > 3.

Let f(n) be the number of required moves, that is the number of moves
that are necessary to succeed in transferring a tower of n disks. It is easy
to see that we must



110

(36)

1001 PROBLEMS IN CLASSICAL NUMBER THEORY

(a) first move the n — 1 disks from the top of the first post to the second
post (using in the process the third post);
(b) then move the largest disk to the third post;
(c) and finally move the n — 1 disks from the second post to the third
(using if need be the first post).
We then obtain, by setting f(0) =0 and f(1) =1,

fn)=2f(n-1)+1 (n2>1).
We observe that f(2) =3, f(3) =7,..., and we then conjecture that
f(n) =2" - ]-7

a result which can easily be proved by induction.

Let N be an arbitrary positive integer. Let F;, be such that F;, < N <
F,, +1. Set Ay = N—F;,. If Ay =0, we are done, since N = F;,.
Otherwise, let F;, with i3 < i; be such that Fi2 <A< Fiz + 1. If
Ay = Ay — F;, = 0, we are done, since in this case N = A; + F;, =
Ay + F, + F;, = F;, + F;,. Otherwise, we choose F;, such that F;, <
Ay < Fi,+1, and so on. The process will end since the sequence of positive
integers A; is decreasing, so that eventually we will obtain A, = 0 for a
certain positive integer r, in which case we have

N=F, +F,+ - +F,.

(Problem #360 in Barbeau, Klamkin & Moser [3]) We first observe that
12 _ 02 —
32-22 = 5
5247 =
-6 = 13
while
22-1% =
42 32 =
62 -5 = 11
8 -7 = 15

Hence, it easily follows that

(m+3?=(m+2? —((m+1)?-m?)=4 (m=0,1,2,3,...);
that is

4=m?> —(m+1)? - (m+2?%*+(m+3)? (m=0,1,2,3,...).

It follows from this that if n can be written as

n=e;12+e2%+ 6332 +eqd? 4+ -4 ekkz,
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the same is true for n + 4, since we then have

ntd=e 1% +e22+ - ek + (k+1)% - (k+2)°
—(k+3)* + (k+4)2

As we mentioned in the statement of the problem, the numbers 1, 2, 3 and
4 can be written in the stated form. We may therefore conclude that all the
integers can be written in this form. Our argument therefore establishes
the result without however providing the explicit form taken by any given
integer. Curiously, it is nevertheless possible to obtain explicitly such a
representation. Here it is. Each integer > 5 is of the form 4r + 1, 4r + 2,
4r + 3 or 4r 4+ 4, with r > 1, and we can establish that

4r41 = 12+Z 1)71((2i)2 — (2i + 1)2),
2r+1
ar+2 = 32+42+Z ((2i +1)% — (20 +2)?),
4r+3 = —12+22+Z (20 +1)2 — (20 + 2)?),
2r+1
4r4+4 = 22+32+Z 1(20)% = (2i + 1)?).

(37) We construct a procedure, using MAPLE software (here, we have used
version 5), which gives the positive integers n < N such that (In,n!) # 2.

> kurepa:=proc(N)
> local n;
> for n from 1 to N do
> if gecd(sum(k!,k=0..n-1),n!)<>2
> then print(‘ n‘=n) else fi;od; end:
> kurepa(1000) ;
(38) Assume that the integers a and b are increased by n. Then we have

a+n=(b+n)652+ 8634 — 651n.

Since the remainder must be positive, it follows that 651n < 8634, that is
n < 13.26. Hence, n = 13.
REMARK: More generally, with a = bg + r instead of (x), the quantity n

L I
is given by n = pi)

(39) Let n be the number of “1”s in N. We then have

N=1+2"422423 ... 42n"l=9on_1.
Therefore,
N? = 22r ot =2rti(2nTl —1) 41
= omtl(2n 242" 4 424 1) 41
22—l g g2n=2 4 .. g gnt2 4 ontl 4,
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an expression which can be written as follows in basis 2:
11...1100...001.
N e N e
n—1 n

Let N = 737+ 1337 4 1937. We will show that 3|N and that 13|N. Indeed,
N=6+1)%+12+1)% +(18+1)3"=34+3
for a certain integer A, while
N =(13-6)% +13% + (13 +6)>" = 13 B + (—6)*>" + 65" = 13°"B

for a certain integer B. Since (3,13) = 1, it follows that 39|N.

REMARK: This result remains true when the integer 37 is replaced by an
arbitrary odd positive integer. Moreover, note that by using congruences,
the proof is almost immediate.

We first observe that

49=48+1, 2352=72-48 and 2304 =48>

We therefore need to show that

(1) 482|49™ — 49 -48 - n — 1.

In fact, we will show the more general result

(2) (a—1)a" —a(a—1)n —1.

First of all, we observe that

a”—ala—1n-1 = (@ —-1)—ala—1)n
= (@-D@ '+a" 2+ - +a+1)—ala—1)n
= (a-1)(a""+a" ?+---+a+1—an).

Since the expression a"~! +a" "2+ ...+ a + 1 — an vanishes when ¢ = 1
and is divisible by a — 1, we have

a"—ala—1)n—-1=(a—-1)%-N

for a certain positive integer N, which establishes (2) and therefore (1).
Let n be an arbitrary positive integer and let N = n*+42n3+2n2+2n+1.
It is clear that

N = (n+1)* — (2n3 + 4n? + 2n)
=m+1D*-2n(n+1)? = (n+1)%(n +1).

Therefore, if N is a perfect square, there exists a positive integer a such
that (n + 1)2(n? + 1) = a?, in which case there exists another integer b
such that n? + 1 = b2. Since two perfect squares cannot be consecutive,
the result is proved.

We write N =10a +bwhere0<a<9,0<b<9and M =10b+a. In
this case, M — N = 9(b— a) and the first result is proved. In order to find
the integers N such that |M — N| = 18, it is enough to choose |b—a| = 2.
Therefore, N = 13,20, 24, 31, 35, 42, 46, 53, 57, 64, 68, 75, 79, 86, 97.

The answer is YES. Since n = 3m +r, 0 < r < 2, it is obvious that
(3,n2 +1) = 1, and the statement is verified.
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(45) The answer is YES. By simply writing n = 5m + r, where 0 < r < 4, we
easily obtain the result. The result is clearly the same when we replace 5

by 7.
(46) Let n =kp+r, 0 <r < p— 1. Using the Binomial Theorem, we obtain
N(n) = ag+ai(kp+r)+-+as_1(kp+7)*"' +as(kp+r)°

= N(r)+pM,

for a certain integer M. Hence, p|N(n) if and only if p|N(r).
Setting n = 7k +r, 0 < r < 6, we find that the required integers are
those of the form n = 7k + 1 as well as those of the form n = 7k + 4,
where k € Z.
(47) (1987 American Invitational Mathematics Examination). Let N be the
number to compute. Since 324 = 182 and since

a* 4 18?2 = (a? + 18)% — 36a? = (a® + 18 + 6a)(a® + 18 — 6a),
the number N can be written as

H (10 + 12k)* + 182
(4 + 12k)4 + 182

_ fr [(10 + 12K)% + 18 + 6(10 + 12k)][(10 + 12k)2 + 18 — 6(10 + 12k)]
=11 [(4+ 12k)2 + 18 + 6(4 + 12k)][(4 + 2k)2 + 18 — 6(4 + 12Kk)]

1 (144Kk? + 312k + 178)(144k2 + 168k + 58)
- (144k2 + 168k + 58)(144k2 + 24k + 10)

B f[ 144k? + 312k + 178
B 144k% + 24k + 10

But since 144(k + 1)? 4 24(k + 1) + 10 = 144k? + 312k + 178, the number

N can be written as

(48) Consider the number 10101 in basis b > 2. Then
10101 =1-4*+0-5*+1-b+0-b+1-0=b*+b"+1
=B +b+1)(% -b+1),

a product of two integers larger than 1.
(49) The product of four consecutive integers is
N :=n(n+1)(n+2)(n+3).

Since a member of the product is divisible by 4 and another is divisible
by 2, this shows that 8| N. On the other hand, if we write n = 3k + r,
0 < r < 2, we easily see that 3|N. Since (3,8) = 1, we conclude that
24|N.

(50) If n is an odd positive integer, we know that a + bja™ + b™. Therefore,

T=1+6014+6%, 7=2+52""+5Y, 7=3+4[3*" +4*,

and the result follows.
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(CRUX, 1987; solution given by Aage Bondesen). Let N = n(n+ 1)(n +
2)(n+ 3)(n+4) be the given product. It is clear that N must contain two
or three multiples of 2, one or two multiples of 3, only one multiple of 5
and no more than one multiple of any other prime number. Thus, if the
product is a perfect square, each of the integers n+ j (0 < j < 4) can be
written as

2r3°52e72 ... (r>2,5>1,a>1,b>0,...).

In short, each of the integers n + j (0 < j < 4) is of one of the following
forms:
(i) r even, s even:

n+ j = 22k32mp2e72b... = (2k3mpaTh. .. )2, a perfect square;
(ii) 7 odd, s even:
n 4 j = 22k+132mp2a72b . — 9 (9k3mzarb..)? twice a perfect
square;
(iii) r even, s odd:
n+ j = 22k32mFlg2a72b. .. = 3 (2k3m5a7b. .. )2, that is three times

a perfect square;
(iv) r odd, s odd:

n 4 j = 22k+132m+lg2ay2b. . — 6 (2k3m5arb...)% that is six times

a perfect square.
But we have five factors in the product N, each being of one of the above
four types. Using the Pigeonhole Principle, we may conclude that two
of the factors n + j must be of the same type. Let us first examine the
possibility that it is one of the types (ii), (iii) or (iv). This is not possible,
since if we take for example type (ii), we would have that two amongst
five consecutive numbers belong to the sequence 2, 8, 18, 32, 50, ...,
that is numbers separated by at least 6. Therefore, two of the factors
n + j must be of type (i), that is perfect squares. But the only chain
of five consecutive numbers which contains two perfect squares is 1, 2, 3,
4, 5, whose product is equal to 120, which is not a perfect square. This
completes the proof.
We only need to observe that n® —n = (n — 2)(n — 1)n(n + 1)(n +2) +
5n(n? —1).
Since n and (n+ 1) are two consecutive integers, 2|n(n+1). To show that
3|n(n + 1)(2n + 1), it is enough to consider the three cases: n = 3k +r,
0<r<2 Ifn=3korn = 3k+ 2, the result is immediate. When
n = 3k + 1, we have that 3|(2n + 1). The result is therefore true for each
n > 1.
We only need to observe that using the Binomial Theorem, there exists a
positive integer M such that

(a+ 1" =14 (n+1)a+a®M.
Observe that
nrl=mn+1-1)2+1=n+1)>2*-2(n+1)+2.

Hence, for the relation to be true, we must have that (n + 1)|2, that is
n=1
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Since
n8 +206 = (n? +2 — 2)% 4+ 206 = (n? + 2)3 — 6(n? + 2)?
+12(n? +2) + 198,

the relation will be true if (n?+2)|198. The only possibilities are therefore:
n?+2=1,23,6,9,11,18,22,33,66,99,198, in which case the positive
values of the required n are: 1, 2, 3, 4, 8 and 14. For example, with b =5
and a = 2, we have 5[22 +1,5/2-22 and 5 /2% + 1 = 17.

First observe that n® + 216 = (n3 + 2 — 2)2 + 216. Then we proceed as
in the preceding problem, and we obtain that the only possible integer n
satisfying the given property is n = 2.

The answer is NO. Indeed, if b|a® + 1, then there exists a positive integer k
such that a?+1 = kb. It follows that a*+1 = (kb—1)?+1 = k2b? —2kb+2
and therefore that in order to have bla* + 1, we must have that b[2. It is
easy to choose integers a and b in such a way that bla? + 1 and b}2a?.
For instance, with b = 5 and a = 2, we obtain that 5|22 + 1, 5 /2 - 22 and

’ Sff?:)(:i))(n<Z)’n<’23><”(Z>’k§>)

we obtain the result.
(b) This follows from the fact that

mr =0 (1) (7)) = (e rr-n(2)#(2))

- Z)(n+1—k,k)
and from the fact that (n+1—k,k) = (n+ 1,k).
(c) Let
z n . .
A= {x€Z| m(k—l) 1san1nteger}.

Obviously, x =n+2 — k € A. Since

k-1 no\ (k—1)n! [ n
n+2—k<k—1> T n+2-k)(k—-D!(n+1-k)! (k—2)’
then x = k — 1 € A. Hence, any linear combination of (k — 1) and
(n+2—k) also belongs to A. In particular, (n+2—k, k —1) belongs
also to A and since (n+2—k,k—1) = (n+ 1,k — 1), we obtain the
result.

REMARK: Parts (a) and (b) of this problem could have been solved
as in part (c).

(60) (Putnam, 1984). It is clear that

fn+2)—fn+)=n+2)=(n+2)(n+1)!
=(n+2)(fn+1) = f(n)).
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(61)

(62)

(63)

(65)

(66)

(67)

(68)

(69)
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Therefore, choosing P(z) = z 4+ 3 and Q(z) = —z — 2, the result follows.
We only need to observe that

(23(n+1)+3 _ 7(TL + 1) _ 8) _ (23n+3 —Tn — 8) — 7(23n+3 _ 1)

and that 7|23"*3 — 1, and thereafter use induction.
REMARK: This result follows also from Problem 54. Indeed,

PHT+1)3 - — (T4 1)} =23 —Tn—8.

We have a = 10g+7, 0 < r < 10. Therefore, we must have that 10|r1°+1,
and this is why we must have r =3 or 7.
The answer is YES. Indeed,

22" 1 = 4" -1=3+1)" -1

3+ (M)t (D)2 (" )3430-1
1 2 n—1

n n n—1 n n—2 n

3 +(1>3 +(2)3 ¥ +<n_1)3,

an expression which is divisible by 3.

Let 6k + 5 be an integer. To show that this integer can be written in the
form 3m — 1, we must find an integer m such that 6k +5 = 3m —1. To do
so0, it is enough to choose m = 2k + 2, thus ending the proof of the first
part. For the second part, let 3k — 1 be an integer. Can one find, for each
positive integer k, an integer m such that 3k — 1 = 6m + 5, that is such
that 6m = 3k — 67 The answer is NO, because if k is odd, it is clear that
it is impossible to find such an integer m.

The answer is YES. Indeed, if n = 8k + 7 = 6¢ + 5 for certain integers k
and /¢, then 4k = 3/ — 1, which happens if and only if £ = 3,7,11,15,.. .,
that is when £ is of the form 4m + 3. Hence, all numbers n of the form

It

n=60+5=6(4m+3)+ 5= 24m + 23

are automatically of the two required forms, and, of course, there are
infinitely many of them.

Let k € N; then My = 2pops---pr +1=2(2r +1)+ 1 =4r + 3. But we
know that each perfect square is of the form 47 or 4r + 1, and certainly
not of the form 4r + 3.

Let N = n? = m2 for certain positive integers n and m. We easily see
that n? is of the form 7k, 7k + 1, Tk +2 or 7k + 4, while m? is of the form
7k, Tk + 1 or 7k 4+ 6. Hence, N must be of the form 7k or 7k + 1.

Since 2 and y? are of the form 4n + 1, we see that 22 + y? is of the form
4m + 2. But each perfect square is of the form 4k or of the form 4k + 1.
Thus the result.

The Binomial Theorem gives

(n+1)" -1 Z;nk(;D =n2+§ (Z)"’“

n

and since (Z) is an integer, the result is immediate.
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(70) By using the Binomial Theorem, we obtain
nfF—1 = [(n-1)+1]F-1
= (n-1D)*+kn-1)*14+.. .+ k(n-1),
and we observe that all the terms of this last expression are divisible
by (n — 1)? except perhaps the term k(n — 1), thus the result. The more
general case can be treated in a similar manner, by considering the relation
nk —a* = ((n —a) +a)k — a*.
(71) (a) By using the Binomial Theorem, we find

a"=(a—b+b)"=(a—-b"+ (?)(a—b)n_lb—k---

+ (n " 2) (a—b)%""2 + (n " 1) (@ —b)b™ +b".

Hence, there exists an integer K such that

a™ —b"

— = (e (T)(a—b)"—2b+...

+(n T_l 2) (a—b)b" 2 4+ nb" ! = K(a—b) +nb"" L.
It follows that
n _ pn
(1) <aaT,a—b) = (nbn_l,a—b).
Similarly,

b*=(a—(a—0b)" =a" - (T;)an_l(a— b) +---
#e (" ata- 0t (-1a -0,

and therefore, we find

aa : z =na™"' + L(a—b)
for a certain integer L. Hence,
a” —b" n—1
(2) (a_b,a—b)=(na ,a—Db).

Using the equations (1) and (2), we obtain

am — b o
(S5 a-0) = (tanam).
Indeed, let d = (na™',a —b) = (nb"~',a —b) and g = (n(a,b)" !,
a—b). Since d|na™! and d|nb™"1, it follows that
d|(na™ 1, nb" 1) = n(a™ 1, 5" ) = n(a,b)" L.

By using this relation and the fact that d|(a — b), we have d|g. Con-
versely, since g|n(a,b)" "1, then glna™1; and since g|(a—b), it follows
that g|(na™!,a — b) = d. Hence, g = d, which gives the result.
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(b) Setting b = —B, we have
a”+b" a" - B"
a+b  a—-B "’
Part (a) allows us to conclude that

a™ +b" a™ — B™
( o+ ’““’) = (ﬁ’a'3>
= (n(a,B)" ',a— B) = (n(a,b)" ',a+b),

as was required to prove.
(c) Part (b) allows us to conclude that

(a”—{—bp

a+b

depending whether p divides a + b or not.
(72) If 2|n and n > 2, then (n — 1)! is even while n* — 1 is odd. If 2 /n and
n > 5, then n — 1 is even and

,a+b) =(p,a+b)=1lorp

-1
n—1=2n

| (n—2)!

so that (n—1)2|(n—1)!. Since (n—1)! = n*—1, we must have (n—1)%|nF -1,
and using Problem 70, we must have (n — 1)|k and therefore k > n — 1.
In this case, for n > 5,

nF—1>p" 11> (n-1).
Hence, the only possible cases yielding a solution are n = 2, n = 3 and
n = 5, the corresponding values of k then being 1, 1 and 2.
(73) (a) Since b = aqy + r; and since @ > 71, ¢ > 1, then b = aqy + 71 >
r1q1 +r1 > 2ry. Similarly, @ = 7192 + 72 > r2q2 + 2 > 2r5. Finally,
for each k > 1,
Tk = Tkt1qk+2 T Tht2, 0 <Thio <Thi1,
so that

Tk = Tk+1qk+2 + Tk42 > Th2qk+2 + Tht2 = 2Tk42.
(b) Since
b>2r > 22r3 > 2%r5 > ... > 20D/ 2, > 9 HD/2 5 93/2)

we conclude that 7 < 2logb/log2, and the result follows.
(74) Consider the numbers of the form n = 3%, k =0,1,2,3,..., so that

_ _ 1\ 2 _
() 2041 =28 4+1=28"""841 = (2“ 1+1) ((2” ) — 2 ‘+1).

We will show that

(i) the first factor on the right-hand side is divisible by 3¥=! while

(ii) the second factor is divisible by 3.
From this, it follows that the left-hand side of (%) is divisible by 3¥~1.3 =
3k =n.

To show (i), we will show by induction that 2™ + 1 is divisible by 3.

It is clear that this result is true for m = 1, since 3|9. Assume now that
237" 4+ 1 is divisible by 3. Thus, if we set z = 23", we may write
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m m — 3
23 +1:(23 1) +1=2*+1=(z+ (2?2 —2+1)
= (2" 1) (@2 -2+ 1),

an expression divisible by 3, because of our induction hypothesis.

In order to show (ii), we only need to observe that if a is an odd
positive integer (namely, here a = 3*¥~1!), then (2%)? — 22 + 1 is divisible
by 3, which is indeed the case since

(292 =2 +1=4"-241=1-2+1=0 (mod 3).
(75) Using Euclidean division, we can write m = ng+r, 0 < r < n. Hence,
am—1=a"" —a""+a" —1=0a"(a" — 1)+ (a™)? - 1.
In light of Problem 8, a™ — 1|a™? — 1, so that we have
a”—1la™ -1 < a" —1|a™(a” — 1).

But (a™ — 1,a™) = 1, meaning that o™ — 1 must divide a” — 1, and this
is true provided r # 0. Finally, the result follows.

(76) We only need to observe that N, = 1071 + 102 + ... + 10+ 1 =
(10™ — 1)/9 and to use the fact that 10™ — 1]10™ — 1 if and only if n|m
(see the preceding problem).

(77) Any number in the sequence is of the form 100k + 11 = 4(25k + 2) + 3,
where k is a nonnegative integer (made up entirely of the digit “1”). Then,
any integer in the sequence leaves 3 as a remainder when it is divided by
4 and therefore cannot be a perfect square, since it is well known that any
perfect square is of the form 4r or 4r + 1.

(78) The required number is 2% - 3%. For the general case, the smallest number
is 2(nm] . 3lnml,

(79) Since 371 = 370 + 1, and since 370 is already in the list, it is obvious that
371 is this fourth number.

(80) There are

1000 1000 1000 1000 1000
1 — — —
- [5-[5- 15 [50 r

1 1
+[ 000] _ [ 000} o6

15 30
such numbers.
(81) We are looking for a,b € N such that

p=a2~b2:(a+b)(a—b).

But since p is a prime number, we must have a —b =1 and a + b = p.
Hence,
p+1
Y d bp=2_-—.
a 5 an 5

‘We have thus obtained that

(3 -2
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(82) The result follows immediately from the fact that the system of equations
a—b=1and a+b = p has a solution, namely a = (p+1)/2,b = (p—1)/2.

(83) The answer is YES. However, uniqueness does not hold because for in-
stance 21 = 112 — 10? = 5% — 22.

(84) This follows from the fact that 7 = 10 — 3 is a divisor of 109 — 3°.

(85) Let m be this integer. Then,

m =2k +1=a?+ b2 a odd, b even.

We then have that there exist nonnegative integers M and N such that
a=2M +1 and b = 2N. Hence, a> = 4M? +4M +1 = 4K + 1 for a
certain integer K, and b?> = 4N2. We have therefore established that

m=a’>+b>=4K+1+4N? =4n+1,

for a certain integer n, as required.

(86) If @ and b are odd, that is a = 2m + 1 and b = 2n + 1, say, then we have
a® + b = 4k + 2 = 2, which is impossible since any perfect square is of
the form 4k or 4k + 1.

(87) (TYCM, March 85). For k = 0, we have 10* — 1 =10"-1=0= 0% a
cube. If k < 0, then 10¥ — 1 is not an integer. Hence, assume that & > 1
and that 10¥ — 1 = n3. Setting Ny = 5(10* — 1), we then have

Ne=11...1=10*"1+10F24+... + 10+ 1.
k

But, for j > 1, there exists a constant A > 1 such that 10/ = (32 +1)7 =
3A + 1, which allows us to conclude that there exists a constant M > 1
such that N = 3M + k. Since 9|(10% — 1) = n3, it follows that 27|10% — 1.
Therefore 3| Ny so that k = 3r for a certain positive integer r. We have
thus established that 103" — 1 and 103" are two consecutive cubes (with
r > 1), a contradiction. Hence, the only integer k such that 10 — 1 is a
cube is £ = 0.

(88) Since a|42n + 37 — 6(7n + 4) = 13, the result follows.

(89) By hypothesis, we have that (a + b)/ab is an integer and therefore that
abl(a +b). Since ala + b and ala, it follows that a|b. Moreover, bla + b
and b|b imply bla. Now clearly, a|b and b|a, with a, b positive, implies that
a = b. It then follows that, for 1/a+1/a = 2/a to be an integer, we must
have a|2, which means that a = 1 or 2.

(90) We write a = 4A, b = 4B where (A, B) = 1. Then, (a?,b%) = 16(A%,4B3),
and since (A2, B®) = 1, we conclude that each common divisor of A% and
4B3 must be 1 or 4. Hence, the possible values of (a2,b?) are 16 and 64.

(91) Set d; = (3a+5b,5a+8b) and d = (a, b). Since d;|(3a+5b) and d; [(5a+8b),
then d4 | (8(3a+5b) — 5(5a+8b)), that is di|a. In a similar way, we obtain
that d;|b and consequently d; |d.

Since d = (a, b), it follows that d|(3a+5b) and d|(5a+8b) and therefore
d|d;. Since d|d; and d;|d, we conclude that d = d;.

The general case can he handled in a similar way, and we obtain
(ma + nb,ra + sb) = (a,b) when ms —nr = 1.
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(95)

(96)

(97)

(98)

(99)

(100)

(101)

(102)

(103)
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Let r = (d,m) and set s = d/r. Since r|m, it is enough to show that s|n.
Letting M = m/r, then

(é,ﬁ) = (s,M)=1.

Since d|mn, there exists an integer ¢t such that d¢ = mn, so that rst =
Mrn, that is s|Mn. Since (s, M) = 1, it follows that s|n. Let d’' = (r, s);
then d’|r and 7|m imply that d’'|m and d’|n. We therefore have d'|(m,n) =
1, so that (r,s) =1.

We have that d|(a + b) + (e — b) = 2a and therefore that d|a since d is
odd. Similarly, we have that d|{a + b) — (a — b) = 2b and therefore that
d|b since d is odd. Hence, d|(a, b).

Since 19?2 = 361, each composite number < 360 is divisible by a prime
number < 17. Since there are only seven prime numbers < 17, it follows
by the Pigeonhole Principle that at least two of these given eight composite
numbers must be divisible by the same prime number.

Since ab =12 = qfal . -qi“’“ for certain prime numbers g1, qs, - .., g and
certain positive integers a;, as, ..., ax and since (a,b) = 1, it is clear that

some of the ¢>*’s will be factors of a while the others will be factors of b,

thus establishing that a and b are perfect squares.

If it were true, it would follow from Problem 95 that n and n + 1 are two
consecutive perfect squares, which is not possible.

The only possible values are 1, 2, 7 and 14. Indeed, if d = (n,n + 14),
then d|14.

The first statement is true because it is equivalent to 3|(n — 1)n(n + 1).
The second statement is false: simply take n = 4. The third statement is
true because it is easily shown to be equivalent to 8/4n(n+1). The fourth
statement is true because 2|n(n + 1) and 3|n(n + 1)(n + 2).

The answer is YES. Indeed, on the one hand, 3|n(n + 1)(n + 2), while on
the other hand, one of the two numbers n and n + 2 is divisible by 4, the
other by 2.

Since we have n? + 47 = n? + 48 — 1, it is enough to show that 24|n? — 1.
First of all, any positive integer n is of one of the following six forms: 6k,
6k + 1, 6k + 2, 6k + 3, 6k + 4, 6k + 5. Since (n,2) = (n,3) = 1, it is
clear that n can only be of the form 6k + 1 or 6k + 5, in which case it is
immediate that n? — 1 is divisible by 24.

Let a = dr and b = ds where (r,s) = 1. Dividing each of the integers a,
2a,...,ba by b, we obtain the quotients

ror roor
- 2—, ..., (b=1)—, ds—.
(x) s’ s’ 2t )s’ s

Since (r, s) = 1, the only integers amongst (%) are those whose numerator
is a multiple of s. Since b = ds, this will happen exactly d times.

Part {(a) is immediate. For part (b), it is sufficient to observe that
(xo +b)a+ (yo — a)b = d.

Let d = (a,mn); then d|a and d|mn. Since (m,n) = 1, using Problem 92,
we have d = rs, (r,s) = 1, r|m and s|n. But rs|a implies r|a and s|a.
It follows that r|(a,m) and s|(a,n), so that d|(a,m)(a,n). To complete
the proof, we must now show that (a,m)(a,n)|d. Let d2 = (a,m) and
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(105)

(107)

(108)

d =
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(a,n); then dy|a and da|mn, so that da|(a, mn). But d;|a and di|mn

imply d1|(a, mn). Since (m,n) = 1, it follows that (d1,dz) = 1, which
allows us to conclude that dids|(a, mn).

(104) Let d = (n? 4 3n+2,6n3 + 15n% + 3n — 7). We then have that d|6n(n? +
3n+2) — (6n3 +15n% +3n —7) = 3n? + 9n + 7. Now since d|n? + 3n + 2,
it follows that d[3n% + 9n + 7 — 3(n? + 3n + 2) = 1 and therefore d = 1.
The first three problems can be solved in a similar way. For (a), we
proceed as follows. Let d = (a + b, a — b), so that d|2b and d|2a. We then
have d|(2b,2a) = 2(a, b) so that d|2, which proves that d = 1 or 2. Finally,
for (d), it is sufficient to notice that a? — 3ab + b% = (a + b)? — 5ab.

(106) (a) Set d = (a® + b, a® — b3). We then have that d|2a® and d|2b?, and

(b)

(a)

(a)

(b)
()

since (a,b) = 1, we have d|2. Therefore, d = 1 or d = 2. More
precisely, when a and b are of opposite parity, we find the value 1,
while if @ and b are of the same parity, we obtain the value 2.

We have

(a? —b%,a® - b°) z(a—b)(a+b,a2—ab+b2)

=(a—b)(a+b,(a+b)2—3ab) z(a—b)(a+b,3ab>.

Let d = (a+b,3ab), so that d|3b(a +b) — 3ab = 3b* and d|3a(a+b) —
3ab = 3a?, and therefore d|3. It follows that (a2 —~b2%,a®> —b%) =a—b
or 3(a —b). More precisely, the value isa—b if 3 f(a+b) and 3(a—b)
if 3[(a + b).

False. Indeed, (2,3) = (2,5) = 1 even though 6 = [2, 3] # [2,5] = 10.
True. It is enough to show that: (a,b) = g = (a?,b%) = g%. We
know that if (4, B) = 1, then (42, B?) = 1. But by hypothesis we
have a = Ag and b = Bg with (A, B) = 1. It follows that a? =
A%g% and b® = B2%g?, which means that (a?,b%) = (A%2¢2, B%g?) =
9%(A?,B%) = ¢°.

True. Indeed, let g = (a,b) and h = (a,b,¢). It is clear that h|g.
Therefore, it follows that g|h. But g = (a,b) = (a, ¢), which implies
that gla, g|b and g|c. It follows that g|(a,b,c) = h, as was to be
shown.

The statement is true. Indeed, let (a,b) = d, so that a = dA and
b = dB with (A, B) = 1. Therefore, (A", B™) = 1, and since a™|b",
we obtain A™d"|B™d", that is A"|B™. Hence, A™|(A™, B™) = 1,
which shows that A = 1 and therefore that d = a. It follows that
b = dB = aB, which proves the statement.

One can also prove this result by writing a = [[p{* and b = [] p?i,
and then using the fact that a™|b™ to obtain that na; < nb;; that is
a; < b; for each 7, so that alb.

The statement is true because a™|b™ implies a™ a™ " |b™ and there-
fore a™|b™. From part (a), we draw the conclusion.

False. Indeed, (23)?|(2%)3, although 23 J22.

(109) We have (a,b) =1 <= there exist z,y € Z such that az + by = 1. Since
cla, there exists ¢ € Z such that a = qc; therefore, az + by = qcz + by =1

—

(c,b) =1.
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We have (a,bc) =1 <= there exist z,y € Z such that az + bcy = 1. We
therefore obtain that (a,b) =1 and (a,c) = 1.
Assuming that (a,b) = 1, we must show that 1 = (a + b,ab). Setting
d = (a + b,ab), we obtain that d|a? and d|b?, so that d|(a?,b%) = 1. The
more general case (a,b) = d > 1 can be obtained from the first part, using
the fact that (a/d,b/d) = 1.

Let a and b be the integers such that a + b = 186 and [a, b] = 1440.

Since (a,b) = (a + b, [a,b]) and since (186,1440) = 6, then a = 6A and

= 6B where (A, B) = 1. This leads to A+ B = 31 and [A4, B] = 240,

and since (A, B) = 1, we have AB = 240. We then have A(31 — A) = 240

and therefore A = 15 or A = 16. The other two numbers are therefore

90 =2-32-5 and 96 = 2° - 3.

(a) Let d = (a,bc) and g = (a, (a,b)c). We have that gla and g|(ac, bc)
and therefore that g|bc. Consequently, g|d. But d|a and d|bc imply
that d|(ac, bc) = (a,b)c and therefore that d|g. Hence, d = g.

(b) From part (a), we have

(a,bc) = (a,c(a,b)) = (a, (a,c)(a,b)).

Indeed, (c,ab) = (¢, (a,c)b) = (¢, b).

It is enough to show that the two numbers are both powers of the same
prime number. Assume that p® divides either one of the two expressions.
Then, p®|mn, and since (m,n) = 1, then either p®|m and (p,n) = 1 or
else p®|n and (p,m) = 1. Since both cases are identical, we can assume
that p®|m, in which case we must have (p,n) = 1. Therefore,

p%|(ma + nb,mn) <= p“|(ma + nb)
= plb = p*|(b,m) < p®|(a,n)(b,m).

Setting b = a, we obtain (a(m + n), mn) = (a,n)(a,m). Since (m,n) =1
also implies (m + n,mn) = 1, we conclude that (a, mn) = (a,n)(a,m),
thus also obtaining the result of Problem 103.

The answer is NO. This follows from the identity

n\(s\ _(n\(n-r
()0 -C)E=0)
and from the fact that both quantities () and (7~") are larger than 1.
REMARK: This problem remained unsolved until one thought about using
the above identity (see Guy [16], B31). P. Erd6s and G. Szekeres [11]
asked if the largest prime factor of the greatest common divisor of (:)

and (’;) is always larger than 7, the only counter-example with r > 3

being (@ @) ) (@8), Gi)) _9%.38.555.

Let (a,b) = d with [a, b] — (a,b) = 143. First of all, it is clear that d|143.
We must therefore examine the possibilities d = 1, d = 11, d = 13 and
d = 143. Set a = Ad and b = Bd with (A, B) = 1.

If d = 1, then [a,b] — (a,b) = 143 becomes AB — 1 = 143 and since
(A,B)=1,wehave A=a=16and B=b=09,aswellas A=a =1 and
B =0b=144.
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If d = 11, then AB — 1 = 13 and therefore A = 2 and B = 7 (which
gives a = 22 and b = 77), as well as A = 1 and B = 14 (which gives
a =11 and b = 154).

If d = 13, we obtain a = 39 and b = 52.

If d = 143, we have a = 143 and b = 286.

The only six possible (ordered pairs) solutions are therefore

{a,b} = {1,144}, {9,16}, {11,154}, {22, 77}, {39,52}, {143,286}.

(117) For the first part we proceed as follows. Let d = (a,b,¢) and d; =
({a,b),c). Since d|a and d|b, we have d|(a,b). Similarly, d|c; hence, d|d;.
On the other hand, d;|(a,b); it follows that d;|a and d1|b, and since d|c,
this shows that d;|d. Since d|d; and d;|d, we have d = d;.

For the second part, we proceed in the following manner. Let M =
[a,b,c], m = [a,b] and m; = [m,c|]. From the definition of m;, it fol-
lows that m|m; and ¢|m;. Consequently, a|my, bjm; and ¢|m;; that is
[a, b, c]|m1. Conversely, M = [a, b, ¢| implies a|M, b|M and c|M, and there-
fore [a,b]|M and c|M. This allows us to conclude that m; = [[a, b], c||M
and the result follows.

More generally, we have

(a1,a2,...,a,) = (a1, (az,...,a,)) and [a1,a9,...,a,] = [a1, [a2, . . ., a4]].

By using Euclid’s algorithm, we obtain

132 = 102-1+ 30,
102 = 30-3+12,
30 = 12-246,
12 = 6.2

It follows from this that (132,102) = 6 and therefore that
(132,102, 36) = ((132,102), 36) = (6, 36) = 6.
Using the above system of equations starting at the second one from
the bottom and moving up, we obtain successively
6 = 30—12-2=30-(102—-3-30)-2=7-30—2-102
7-(132-102) —102-2=17-132—9-102.
On the other hand, since 7 -6 4+ (—1) - 36 = 6, we obtain that
7-(7-132—9-102) — 36 = 6 = 49 - 132 + (—63) - 102 + (—1) - 36 = 6.
We may thus choose z =49, y = —63 and z = —1.
(118) It is easy to see that (n,n+1,n+2) = ((n,n+1),n+2)=(1,n+2)=1.
Since (n,n+1) = 1, it follows that [n,n+1,n+2] = [[n,n+1],n+2] =
[n(n+1),n+2]. Since (n(n+1),n+2) = (n,n+2) =1 or 2, then
n(n+1)(n+2) if nis odd ,
n(n+1)(n+2)/2 if nis even.
(119) We know that (x) (ab,c)[ab,c] = abe. Since (a,b) = 1, it follows that
[a,b] = ab, and since (a,c¢) = (b,¢) = 1, we have (ab,c¢) = 1. Therefore,
(%) becomes [ab, c] = abe, so that [[a,b],c] = abc. By using Problem 117,
we reach the conclusion.

[n,n+1,n+ 2 :{
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(120) The answer is YES. If (a,b) = 1, we have (a?,b%?) = 1; hence, using
Problem 117, we obtain
(a2, ab,b%) = ((a?,b%),ab) = (1,ab) = 1.

(121) The answer is YES. If (a,b) = 1, then (a?,b%) = 1, [a?,b?] = a?b? and
Problem 120 allows us to obtain that (a?, ab, b?) = 1. Consequently, from
Problem 117, we have

[a?,ab, b?] = [[a?,b%], ab] = [a®b?, ab] = a®b* = [a?, b?].

For the general case (a,b) = d, it is enough to redo the last part with
(a/d,b/d) = 1.

(122) The answer is YES. We set h = (a,b,¢) and g = ((a,b), (a,¢)), and we
easily show that g|h and h|g.

(123) The answer is NO. It is enough to consider the counter-example provided
by choosing a = 6, b =3 and ¢ = 15.

(124) This problem was stated by the mathematician Jean-Henri Lambert (1728
1777). Letting (m,n) = e and using the fact that [m,n](m,n) = mn, we
have

dmnl 1 = (@™ -1+ 1)V —1=(d™ -1)V°
#(" ) am —arer (E Yam-

and we conclude that a|dl™™ — 1. Similarly,

dmm 1 = (@ —1+1)™°—1=(@d"—1)"e
+(m1/e)(d"—1)m/6*1+---+( m/e )(d"—l)

mje—1

and we obtain that b|d™™ — 1. Since (a,b) = 1, the result follows.
(125) Assume that (m,n) =1, m > n. We will show that

(1) (@™ —-1,a"—1)=a—1.

Since (a,b+ ma) = (a,b), we have

(@™ —-1a"-1)=@" -1-(a"-1),a" —1)=(a™ —a",a" - 1).
Since (a™,a™ — 1) = 1, this shows that

(@™ —-1a"-1)=(a"(@a™ " ~1),a" —1)=(a™ " - 1,a™ —-1).

Without any loss in generality, we may assume that m > n, in which case
we can write m =ng+r, 0 < r < n, so that

(@™ —-1,a"-1)=(a" — 1,a" - 1).
Then, writing n =rs +t, 0 <t < r, we obtain
(@"—1,a" —1) = (a" — 1,a’ — 1),

and so on until we arrive at (¢ — 1,a — 1) = a — 1, which proves (1).
Assume now that d = (m,n) > 1. Since (m/d,n/d) = 1, we are brought
back to the first case, and we thus have

((ad)m/d —1,(a%)"/¢ — 1) =at-1,
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which takes care of the first part of the problem. For the other cases
mentioned in the second part (which by the way cover also the first part),
we proceed in the following manner. First letting (m,n) =1 and u = +1,
v = *x1, we have
(@™ 4+u,a”+v) = (a™+u—wv(a" +v),a" +v)

= (e —wa™,a"+v)=(a"" —uv,a" +v),
since (a™,a™ +1) = 1. Continuing this process, we obtain
(@™ +1L,a"+1)=(a"+1,a"—1)=(a+1,a+1)or (a+1,a—1)
according to the parities of m and n. More precisely, we have the following;:
Since (a + 1)|(a* + 1) for k odd and since (a + 1)|(a* — 1) for k even, it

follows that taking into account the fact that a + 1 cannot divide a* + 1
if k£ is even unless a = 1, we obtain that

a+1 if mn is odd,

(@™ +1,a"+1)=< 1 if mn is even and a is even,
2 if mn is even and a is odd
and that
1 if n is odd and a is even,
(@™ +1,a"-1)=¢ 2 if n is odd and a is odd,

a+1 if niseven.

When d = (m,n) > 1, we can proceed essentially as we did for the first
case. To find the value of (a™—b™, a™ —b"), we may assume that (a,b) =1
and a > b. In this case, set d = (m,n), v = a®—b? and v = (a™ —b™,a™ —
b™). Since d|m, it follows that u|(a™ — ™), and since d|n, we also have
u|(a™ — b™) and we obtain that u|v. Then, we only need to show that v|u.
Choose integers > 0 and y > 0 such that mz — ny = d. It is clear that

amz — any+d — any(bd =+ U),
and therefore
™ = b = @ (b 4 u) — b = b — B 4 ua™.

Since v|(a™ —b™), we have v|(a™* — b™*) and similarly v|(a™ —b™¥), and
the last equation allows one to obtain that v|ua™. Since (a,b) = 1, we
have (v,a) = 1. Indeed, every common divisor of a and v divides a™ and
a™—b™, and therefore divides b™, and since (a,b) = 1, we have (a,v) = 1.
Finally, v|ua™ implies v|u and the result follows.

Let a and b be two arbitrary integers, and set x = 5a and y = 5b. In
order to have z + y = 5a + 5b = 40, we must have a + b = 8. Moreover,
to have (z,y) = 5, we must have (a,b) = 1. Therefore, it remains to show
that it is possible to find infinitely many relatively prime pairs of integers
a and b such that a4+ b = 8. To do so, it is enough to choose, for example,
a=3+2tand b=5—2t, where t € Z.

There are four possible pairs: a = 15, b = 90; ¢ = 90, b = 15; a = 30,
b =45; a = 45, b = 30. For the general case, we proceed in the following
way. Since (a,b) = d, there exist integers A and B such that a = dA,
b = dB, where (A,B) = 1. But [a,b] = m implies that [dA,dB] =
d[A, B] = dAB = m. Hence, the system of equations (a,b) = d, [a,b] =m
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has solutions if and only if d|m. These solutions will be the same as that of
AB = m/d where (A, B) = 1. For each prime number p dividing m/d, we
cannot have both p|A and p|B. Therefore, either A contains the largest
power of p which divides m/d, or else A does not have p as a divisor.
Hence, for each prime factor p of m/d, we have two choices for the pair
{A, B}, and therefore in total as many pairs as m/d has distinct prime
factors, that is as many as 2«(m/d),

(128) This follows from the fact that 3|m and 3|n while 3 f101.

(129)

(a) We observe that
" =T

It follows that
() @ —1="" + 1)
="’

2

2m—1

—1)

+1)@@ 7 +1) @+ D)@+ 1)(a—1).
Hence, if m > n, a®" + 1 is a divisor of a?” — 1, as required.

(b) Note that a®” —1 = (a?” 4+ 1) — 2 and that this integer is divis-
ible by each of the factors on the right-hand side of (). Let d =
(a®” + 1,a*" + 1). We may assume that n < m, and therefore
a®" +1|(a*" + 1) — 2, which implies d|(a®” + 1) — 2. Therefore,
d|2sothatd=1ord=2.

(130) (AMM, Vol. 75, 1971, p. 201). Let d be the greatest common divisor of

(131)

the given numbers. In particular, d divides the sum of these numbers and
since (see Problem 17 (b))

() () () + e (o) =2

it follows that d must be of the form 2%. If n = 2*r, where r is an odd
integer and k a nonnegative integer, then since (21" ) = 2k+1y it follows
that any common divisor of the given numbers cannot be larger than
2k+1  To show that 2¥*! divides all these numbers, we first write, for
m=13,...,2n—1,

m 2k+1,r 2k+1,r 2k+1,,‘71
(-G -5 G

Since the binomial coefficients are integers and since m is an odd number,

we have -
2\ _ (2% ok+1 1
m m ’

where M is an integer and m = 1,3,...,2n — 1. This proves that 25+1 is
the greatest common divisor of the given numbers.

Each a; can be written in the form a; = 2%b;, where «; > 0 and b; is odd.
Let B = {b1,b2,...,bpt1}. Wehaveb; <2n,i=1,2,...,n+1. But there
exist only n odd numbers < 2n; hence, there exist j, k such that b; = bg.
Then, consider the two integers

a; =2%b; and ap=2%b.

It is clear that a; # ay (since b; = by). If a; < ai, then ajlak. If o < v,
then ar|a;. In each case, the result follows.
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(132) (Contribution of Imre Kdtai, Budapest). Let

n
=3 (@ +a®)(@® +a).

7=1
Then,
n n n n
= 3P S+ 3 3ol -
j=1 j=1 j=1

But since it is clear that the expression (a] +a§2))(a§-1) +a§- )) is a multiple
of 4, the result follows.

(133) In order to show that a series made up of nonnegative real numbers con-
verges, we only need to bound it by a series which converges. So let £(n)
be the number of digits of the positive integer n, in its decimal represen-
tation. We first observe that, for each positive integer r, we have

> 1=8.91

neA
Ln)=r

Hence, it follows from this that

Si-y vyl Zomzl

neA r=1 neaA nEA
2(n)=r £(n)=r

.Qr- 1 00 9 r—1
_Z o = ;(E) = 80,
from which the result follows.
(134) If a > b, it is clear that a — b > (a,b), and we know that (a,b)[a,b] = ab.
Hence, since
(un+1 - un)[un-f-l’ un] > (un+1a un)[un+17 un] = Un+1 * Un,

we obtain
1 Unt1 —Un 1 1

[Unt1,Un] = Uny1-Un Un  Un41

Therefore the series is bounded above by a convergent series and this is
why it converges.
(135) (a) With MAPLE, we have > for i from 3 by 2 to 525 do
> if isprime(2"i-1)
> then print(2"i-1, ¢ is a prime number °)
> else fi; od;
(b) With MAPLE, we may use
> nextprime(10A(100)+1);
We thus obtain the integer 10100 4 267.
(136) With MAPLE, the program below enumerates the first N (here N = 120)
prime numbers.
> for 7 to 120 do
> p.i:=ithprime(i) od;
For example, p.(1..120) gives the first 120 prime numbers.
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(137) In order to find four consecutive integers with the same number of prime
factors, we must use the function 2. First we type in

>

readlib(ifactors): with(numtheory):

and thereafter, we type in the following instructions:

>
>
>
>
>

Omega:=n->sum(ifactors(n) [2] [i] [2],
i=1..nops(factorset(n))):

for n to 1000 do if Omega(n)=Omega(n+1) and
Omega (n+1)=0Omega(n+2) and Omega(n+2)=0mega(n+3)
then print(n) else fi; od;

To find four consecutive integers having the same number of divisors, it
is enough to type in the instructions

>
>
>
>
>

(138) (a)

A%
>
>
> m:=n; s:=0;
>
>
>

with(numtheory) :

for n to 1000 do

if tau(n)=tau(n+1) and tau(n+i)=tau(n+2)
and tau(n+2)=tau(n+3)

then print(n) else fi; od;

ith the procedure “return”, the search is easily done:
return:=proc(n::integer)
local m,s;

while m<>0 do
s:=10*s+irem(m,10);
m:=iquo(m,10) od; s end:

And for our problem, we have the following procedure:

>
>
>
>

invp:=proc(N::integer) local n;
for n from 1 to N do if isprime(n)
and isprime(return(n)) then

print (n) fi; od; end:

Without the procedure “return”, we may proceed as follows:

>

VVVYV

VVVVYVYV

If

>

>
>
>
>

invp:=proc(N)

for j from 169 to N do

L:=convert (ithprime(j),base,10);# N <= 1229

if type(1000*L[1]+100%L[2]+10*L[3]+L[4],prime)=true
then print(ithprime(j)) else fi; od; end:

invp:=proc(N::integer)

local n;

for n from 1 to N do

if isprime(n)=false then elif
type(sqrt(return(n)),integer)=true
then print(n) else fi; od; end:

we do not use the procedure “return”, we may proceed as follows:

invp:=proc(N) local j, L;

for j from 26 to N

do L:=convert(ithprime(j),base,10);# N <= 168

if type(sqrt(100*L[1]1+10*L[2]+L[3]),integer)=true then
print(ithprime(j)) else fi; od; end:
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or the following procedure:
invp:=proc(N) local j, L;
for j from 169 to N
do L:=convert(ithprime(j),base,10);# N <= 1229
if type(sqrt(1000+L[1]+100+L[2]+10+L[3]+L[4]),
integer)=true
then print(ithprime(j)) else fi; od; end:
With MAPLE:

> for n from 3 by 2 to 10000 do

> if isprime(n) and isprime(n + 2) and isprime(n + 6)

> then print(n) else fi; od;
We prove this result using induction on k. The result is immediate for
k = 2. Assume that the result is true for a certain integer k > 2, that is
for which we have py < 2%. It is enough to show that py,1 < 25*1. From
Bertrand’s Postulate, there exists a prime number between py and 2pg, in
which case pr1 < 2pg, and the result is proved.
It is enough to show that d # 2,4 (mod 6). First of all, assume that d = 2:
if pp =1 (mod 3), then pry1 = pr+2 =0 (mod 3), contradicting the fact
that piy1 is prime; similarly if pp = 2 (mod 3), then px_1 = pr —2=0
(mod 3), contradicting the fact that px_; is prime. The same type of
contradiction emerges when we assume that d = 4. If d = 6k+2 or 6k +4
with £ > 1, the same argument works. For d = 6, it is p1g = 53; for
d= 12, it is Par = 211; for d = 18, it is D2285 = 20201.
REMARK: It is interesting to observe that the gap d = 24 is reached earlier
than might be expected in the sequence of prime numbers, namely with
P1939 = 16 787.
This statement follows from the fact that each of the listed numbers is a
perfect square, since

12321 = 1112, 1234321 = 1111%,. ..,
12345678987654321 = 1111111112,

VVVYVVYV

Let k > 2. Since each number < ny is either 1, a prime number or else a
composite number, it is clear that

(1) ng =1+ 7(ng) + k.
By using MATHEMATICA and the program
n=1;Do[n=n+1;While[PrimePi[n] !=n-10"a-1,n++]; Print[10~a,

" "’n]’{a’l,s}]
we obtain the table

10 18
100 133
1000 1197

This reveals that nig = 18, nigg = 133 and nig990 = 1197. For values
of k larger than 1000, and to accelerate the computations, one can use
the approximation (guaranteed by the Prime Number Theorem) w(z) ~

Togz T Toazg SO that (1) gives
ng N

logng  log? ny

ne ~

+k




(144)
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and therefore that

1 1
(2) ng (1 - - 2 ) ~ k,
lognk  log” ng

which in particular means that

(3) log ny ~ log k.

Combining (2) and (3), we obtain the approximation

(4) nkzk-(l ! ! >_{

logk  log’k

Setting sk(n) := 1+ m(n) + k — n, it follows that if a number n satisfies
sk(n) = 0, then n = ny.
First consider the case k = 10*. From (4), we have as a first approxi-
mation nige = 11 369. By using MATHEMATICA and the program
n=11369;While[(a=s[n]) !=0,n=n+a] ;Print[n]
where s(n) = $1000(n), we obtain that nijggoo = 11374. Similarly, with
the approximation nigs =~ 110425, we obtain that nigs = 110487. The
following is the table giving the values of njgo for 1 < a < 10.

« | Nyo« (67 N0

1118 6 | 1084605

2 |133 7 | 10708555
31197 8 | 106 091745

4 11374 9 | 1053422339
5 | 110487 10 | 10475688 327

Let k > 2. Setting r = [logng/log2|, it is clear that the number ny
satisfies

Z W(n,lc/i) = k.

i=1

From this relation and the approximation m(z) = (guaranteed by

log x
the Prime Number Theorem), it follows that

23

~ R,

log ny
so that logny ~ log k 4 loglognk =~ log k and therefore that
ng =~ klogny = klogk,

which gives a starting point for the computation of the exact value of ny.
Using MATHEMATICA and the program
Do[k = 107j; n = Floor[N[k*Log[k]]];
While[r = Floor[N[Log[n]/Log[2]1];
s=Sum[PrimePi[n~(1/1i)]1,{i,1,r}]; (a=k-s) !=0,n=n+a]l;
Print[j,"->", n,"=",FactorInteger[n]],{j,3,10}]
we finally obtain the following table:
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« | Njpe 87 Nnipe

1116 6 | 15474787

2 1419 7 | 179390821

3| 7517 8 | 2037968761

4 | 103511 9 |22801415981
5 | 1295953 10 | 252096 677813

If n is even, then 2™ +n? is also even and therefore not a prime. It follows
that n = 1,3 or 5 modulo 6. If n = 6k + 1 for a certain nonnegative
integer k, then 2" = 26k*1 =2 (mod 3) and n? = 1 (mod 3); in this case,
we have that 2" + n? =2+ 1 =0 (mod 3). Similarly, if n = 6k + 5 for a
certain nonnegative integer k, we easily show that 32" + n?. Therefore,
the only way that 2" + n? can be a prime number is that n = 3 (mod 6).
Thus, by considering all the positive integers n < 100 of the form
n = 6k + 3 and using a computer, we easily find that the only prime
numbers of the form 2" 4+ n?, with n < 100, are those corresponding to
n=1,9,15,21,33.
We will show that if n is of the form n = 3k+1 or n = 3k + 2 with £ > 1,
then 7|a,. Moreover, we will show that if n is of the form n = 3(3k + 1)
or n = 3(3k + 2) with k > 1, then 73|a,. Finally, since 3|a, if n is even,
it will follow that, for a, to be prime, n must be an odd multiple of 9.
So let n = 3k + a, with a = 1 or 2. Since 8* = 1 (mod 7) for each
integer k£ > 1, we have

an =2"(2" +1) + 1 =22 (2% +e 1 1) 41
=8F29(8%2° + 1) +1=2°(2°+1)+1 (mod 7).
But
7=0 (mod7) ifa=1,
21=0 (mod?7) ifa=2,

which establishes our first statement.
Let us now assume that n = 3(3k + a) with a = 1 or 2. Since 2° =1
(mod 73), we have

an = 2n(2n + 1) + 1= 29k+3a(29k+3a + 1) + 1
= (29)k2%e((2%9*2%2 £ 1) +1=2%(232 + 1)+ 1 (mod 73).

2“(2“+1)+1:{

But
2222 +1)+1=73=0 (mod 73) ifa=1,

2323 L )41 =
(2% +1) {26(212+1)+1=416150 (mod 73) ifa =2,

which establishes our second statement.

Having observed that a, is prime for n = 1,3 and 9, and then con-
sidering all the numbers of the form n = 9(2k + 1), we obtain using a
computer that a, is composite for each integer n, 10 < n < 1000.

That number is n = 9; we then have ag = 326981 = 79 - 4139.
First observe that it follows from Wilson’s Theorem that

[G=bie1_ o=y

J J

1 if j is prime,

0 if j is composite.
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Hence, to obtain the formula of Mindc and Willans, we only need to prove

that
1/n
pn—2+z [1+7r(m] l

But we easily prove that

A 1 ifr(m)<n-—1,
[ﬁ]/l

14+ 7w(m -

0 otherwise.

Now, as m varies from 2 to 2", we have that 7(m) < n — 1 for m =
2,3,... — 1, that is a total of p,, — 2 numbers. Therefore,

1/n
2+Z |:1+7_‘_ :| =2+ pn—2=pp,

as was to be shown.

We use an induction argument. The result is true for n = 1 and for n = 2.
So let n > 3. Assume that the result is true for all natural numbers
< n —1 and let us show that it implies that it must be true for n. Let
P, = Hp<n p. First of all, if n is even, then P,, = P,_1, so that the result
is true for n. Let us examine the case where n is odd, that isn =2k + 1
for a certain positive integer k. It follows that each prime number p such
that k +2 < p < 2k + 1 is a divisor of the number

2k+1\  (2k+1)(2k)(2k —1)(2k —2)--- (kK +2)
(%) ( k >_ 1-2.3.--k ’
Since

2k+1 2k+1 2k+1
2k+1 _ 2k+1 —
et = s (D) 4 (D) (P ),

we obtain ok + 1
+ k
(51 <
It follows that the product of all the prime numbers p such that k + 2 <

2k +1
]:_ ) and therefore smaller than 4*. On the

other hand, using the induction hypothesis, we have that Py, < 4F+1.
This is why

Po=Pyp= [[ - ][] p<a dF=a"=yn
p<h+l  k+2<p<2k+l

p < 2k+1 is a divisor of (

as was to be shown.

Let m = (a,c). Then, there exist two integers u and v such that (u,v) =1
and such that a = mu and ¢ = mv. Hence, since ab = cd, we have
mub = mvd and therefore ub = vd. Since (u,v) = 1, we have u|d and this
is why there exists an integer n such that d = nu. Since ub = vnu, we
therefore have b = nv. It follows from these relations that

a? +b? + % + d? = m*u? + n?0? + m2? + n2u? = m?(u? +0?)
+n2(u2 +v2) — (u2 +v2)(m2 +n2),
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a product of two integers larger than 1.
(151) Since

4nd 4+ 6n% +4n+1=n*+4n3 +6n® +4n+1—n* = (n +1)* — n*
=((n+12=n?)((n+1)?+n?) =2n+1)2n* +2n+1),

the product of two integers larger than 1, the result follows.
(152) First of all, since p + g is even, we can write

Pty
7
Since %‘1 is an integer located between the two consecutive prime numbers
p and ¢, it must be composite, that is the product of at least two prime
numbers, and this is why the right-hand side of (x) has at least three
prime factors.
(153) The answer is YES. We look for positive integers n,a, b and c such that

() p+q=2

n 2 N 3 n 5
— = —_ = b p —_ = .
2 =% 3 5 ¢
It is sufficient to find integers a,b and c¢ such that
20 = 3b% = 5¢°.

The task is therefore to find integers a;, 3; and 7; (¢ = 1,2, 3) such that
2 (2213015m)% = 3 (202302572)° — 5 (29383573)”

To do so, we must find integers «;, 3; and ~v; (i = 1,2,3) such that

207 +1=3as =5as, 201 =302+1=5083, 2v1 =37y =5y3+ 1.

We easily find

ar=T,aa=5,a3=3, P1=5,02=3,03=2, m=3,72=2,713=1

We then obtain that n = 2(27 - 3% - 53)2 = 30233088 000000 serves our
purpose.
(154) This follows from the identity

n42 — 97 = (n14)3 _ 33 — (n14 _ 3)(7128 + 3n14 + 32)

(155) We proceed by contradiction by assuming that there does not exist any
prime number in the interval |z, 2z], in which case we have 6(2z) = 6(z).
By using the inequalities 0.73z < 6(z) < 1.12z, we would then have

1.46z = 2(0.73)z < 6(2z) = 0(x) < 1.12z,

a contradiction.

(156) We proceed by induction. First of all, for n = 4, the result is true,
since 121 = 112 = p2 < pipap3ps = 210. Assume that the inequality
pi < p1p2 - Pk—1 is true for a certain integer k > 5. By using Bertrand’s
Postulate in the form pyy1 < 2py, we then have

pi+1 < 4P% < 4p1p2 - Pr—1 < P1P2 Pk,

and the result then follows by induction.
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If there exist ¢,7,a € N such that ¢" = (¢"/?)? = a2, where r is even
and ¢" = p + m? with p prime and m € N, then a® — m? = p, so that
(a—m)(a+m) = p. Since p is prime, we must have a—m = 1 and a+m = p,
and therefore m = a — 1 and p = 2a — 1. Hence, if 20 — 1 = 2¢"/2 — 1 is
composite, ¢" cannot be written as p + m?, as was to be shown.
For p = 3, the result is immediate. Assume that p > 5. If p = 3k + 1
for a certain positive integer k, then 8k + 1 = 24k + 9, a multiple of 3.
Otherwise, that is if p = 3k — 1 for a certain positive integer k, then
8p — 1 = 24k — 9, a multiple of 3, which contradicts the fact that 8p — 1
is prime. In both cases, the result is proved.
If a positive integer of the form 3k + 2 has no prime factor of the form
3k + 2, then all its prime factors are of the form 3k + 1. Since the product
of two integers of the form 3k + 1 is of the form 3k + 1, the result follows.
Since each product of prime numbers of the form 4k+1 is of the same
form and since each product of prime numbers of the form 6k + 1 is of the
same form, the result follows.
(a) Wehave 23 =3-31+2-21+1-1land 57=2-4!+1-31+1-21+1- 1L
(b) To find the Cantor expansion of a positive integer n, we proceed as
follows. Let m be the largest positive integer such that m! < n and
let a,, be the largest positive integer such that a,, -m! < n. It is
clear that 0 < a,, < m; otherwise, this would contradict the maximal
choice of m. If a,, - m! = n, then the Cantor expansion is given by
n = a,,-m!. Otherwise, that is if a,,-m! < n, let dy = n—a,, -m! > 0,
let m1 be the largest positive integer such that m;! < d; and let an,,
be the largest positive integer such that a,,, -mi! < d;. As above, we
have a < am,; < my. If ay,, - my! = dy; then the Cantor expansion
is given by n = ay, - m! + @, - mq!, where 0 < ap, < my < m. If
Qm, - M1! < di, then we set do = di — ap,, - m1! and we let my be
the largest positive integer such that ms! < dy. And so on. We thus
build a sequence of positive integers m > mj; > my > ... with the
corresponding integers 0 < a.,, < m,;. Since the sequence of m;’s is
decreasing, it must have an end. Let us show the uniqueness of this
representation. Assume that for 0 < a;,b; < j, we have

n=amm!+---+all=bym!+---+ b1l

that is (am — bm)m! + - -+ + (a1 — b1)1! = 0. If both expansions are
different, then there exists a smaller integer j such that 1 < j < m
and a; # b;. Hence,

. m! .
3t ((am = bm) o a1 = by 1)+ (05— ) ) =0
and therefore
m! .
bj —a; = (am — bm)? + (a1 — b)) (G + 1)
) m!
=G+ 1) (am — ) s e (o = b))

which implies that (j + 1)|(b; — a;). Since 0 < a;,b; < j, it follows
that a; = b;, a contradiction.
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(TYCM, Vol. 19, 1988, p. 191). The expression in the statement can be
written as

(p—1'+1  (=Dddl(p—-1)!+1
p - p+d '
Since p+d—-1)! = (p+d-1)(p+d—2)---(p+d—d)(p— 1), we
have (p+d —1)! = (—1)4d!(p — 1)! (mod p + d), and it follows that the
expression in the statement is an integer if and only if
1) (p—l)!+1+(p+d—1)!+1
p p+d

is an integer. From Wilson’s Theorem, if p and p + d are two prime
numbers, then each of the terms of (1) is an integer, which proves the
necessary condition.

Conversely, assume that expression (1) is an integer. If p or p + d is
not a prime, then by Wilson’s Theorem, at least one of the terms of (1) is
not an integer. This implies that none of the terms of (1) is an integer or
equivalently neither of p and p + d is prime. It follows that both fractions
of (1) are in reduced form.

It is easy to see that if a/b and a' /b’ are reduced fractions such that
a/b+a' /b = (ab' + a'b)/(bb') is an integer, then blb' and b'|b.

Applying this result to (1), we obtain that (p+ d)|p, which is impossi-
ble. We may therefore conclude that if (1) is an integer, then both p and
p + d must be primes.

If p =3, then p+2 = 5 is prime and p? +2p—8 = 7 is prime. It is the only
number with this property. Indeed, p = 2 does not have this property,
while if p > 3, then
P’ +20-8=1+2p—-2=2(p+1)=0 (mod 3) <= 3|(p+1).
But for p > 3, p = 3k + 1, and in each of the cases it is easily seen that at
least one of the two numbers p 4+ 2 and p? + 2p — 8 is not a prime.
The answer is YES. If p = 3, then p? + 8 = 17 is prime and p® 4+ 4 = 31 is
prime. It is the only prime number with this property. Indeed, p = 2 does
not have this property, while if p > 3, then p = +1 (mod 3), in which
case p? =1 (mod 3), that is p? +8 =9 =0 (mod 3), so that p? + 8 is not
a prime. Thus the result.
(Ribenboim [28], p. 145). First assume that the congruence is satisfied.
Then n # 2,4 and (n — 1)! + 1 = 0 (mod n). Thus, using Wilson’s
Theorem, n is prime. Moreover, 4(n — 1)1 + 2 = 0 (mod n + 2); thus,
multiplying by n{n + 1) we obtain
4n+ 1) +1]+20* +2n—4=0 (mod n + 2)
and therefore
An+)N+1]+(n+2)(2n—2)=0 (mod n + 2);
hence, 4[(n + 1)! + 1] = 0 (mod n + 2). This is why, using Wilson’s
Theorem, n + 2 is also prime.
Conversely, if n and n + 2 are prime, then n # 2 and

(n=1)!4+1 = 0 (modn),
(n+)!+1 = 0 (modn+2).
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But n(n+1) = (n+2)(n—1)+2, and this is why 2(n—1)!+1 = k(n+2),

where k is an integer. From the relation (n — 1)! = —1 (mod n), we
obtain 2k +1 =0 (mod n). Now, 2(n —1)!+1 = k(n +2) is equivalent to
4n—1)14+2=0=—(n+2) (mod n+2). Moreover, 4(n—1)!+2 =4k =

—2 = —(n+2) (mod n). Hence, 4(n—1)!1+2 = —(n+2) (mod (n(n+2));
that is 4((n -1+ 1) +n =0 (mod n(n + 2)).

The prime number p = 3 is the only one with this property, because if
p > 3, then p = 2k + 1 for a certain integer k > 2, in which case

2P = 22k+1 — 4k .92 =92 (mod 3)

while
p’=1 (mod 3),
so that
2 +p =0 (mod 3).

The answer is p = 19. Indeed, 17p+1 =a%? = 17p = (a — 1)(a + 1). We
then have 17=a—-1land p=a+1lor17=a+1and p=a—1. The
first case yields a = 18 and p = 19, while the second case yields a = 16
and p = 15, which is to be rejected. Thus the result.

(a) The possible values of (a2,b) are p and p.

(b) The only possible value of (a2,b?) is p?.

(c) The possible values of (a3,b) are p, p? and p3.

(d) The possible values of (a3,b?) are p? and p3.

(a) The only possible value is p®.

(b) The only possible value is p.

(c) The only possible value is p.

(d) The possible values are p?, p3, p* and p°.
We have (a?b%,p*) = p* and (a? + b%, p*) = p°.

(a) True. (b) True. (c) True.

(d) False. Indeed, we have 13|22 + 32 and 13|3% + 2%, while 13 /22422 =

8.

It is an immediate consequence of Theorem 12.
Let
a=pit--py,
b=pp*pf,
C:p‘lh ceep)r.
From Theorem 12,
(a,b,c) = pllnin(al,ﬁl ) ‘p:lin(ar,ﬂr,'yr)

and
[a, b, C] _ pllnax(ahﬂl,"/l) . ‘pmax(a,.,ﬁ,.,'y,.)
- .
To prove the result, we proceed by contradiction. Assume for example
that (a,b) > 1. Using the fact that (a, b, c)[a, b, c] = abe, it follows, using
the above notation, that

min(aia ,811)711) + max(aiaﬁi,’yi) =a; + ﬂi + Yi (7’ = 15 27 ce ,7').

But it is easy to prove that for the sum of three nonnegative integers to
be equal to the sum of the smallest and of the largest of these same three
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numbers, at least two of these numbers must be 0. But this contradicts
the fact that (a,b) > 1, an inequality which means that there exists an ig
(1 <idg < r) for which min(ey,,B;,) > 1. Hence, the result.

We use Theorem 12 and the fact that

min{e, B, v} = min{ay, 5;} + min{s;,v:} + min{e, v}
—min{o; + B, Bi + Vi, @i + 73}

The second part follows from the first part and Problem 171.
Let
a :p‘l"l Y
b=p* -,
c=plt--pr.
Since [a,b] = []°_, p™* %} and (a,b) = [T7_, p™™*#} it is enough

i=1Pi i=1P;
to show that, for each 1,

2max{a, B, vi} — max{a;, B;} — max{f;, v} — max{vy;, a;}
= 2min{a;, B, 7} — min{ay, B;} — min{B;,v;} — min{~;, o;}.

Without loosing in generality, we may assume that, for a given i, a; >
Bi > i, from which the result easily follows.
Let a = [[_, p®, b=TI\_, ¥, ¢ = [}, p*. Without loosing in gener-
ality, we may assume that a; < b; < ¢;. The equation of the statement
allows one to conclude that ¢; +a; = %(ai + b; + ¢;) and therefore that
a; + ¢; = b;, which implies, since ¢; > b;, that b; = ¢; and a; = 0. This
means that in order for the relation to be true, for the same prime num-
ber, two of the exponents must be equal while the third one should be
0. Hence, we can choose a = 21 - 31 .50 =6, b =21 -39.51 = 10 and
c=20.31.51 = 15. Note that the numbers 42, 70, 15 will also do.
The left inequality is obvious. To prove the right equality, first observe
that

#n=1[1,2,...,n] = Hp‘sp,

p<n

where p’» is the largest power of p not exceeding n. In other words,
0p is defined implicitly by the inequalities pP» < n < pot1 Tt follows
successively that

0plogp <logn < (6, + 1) logp,

logn
0, < —— <6 1
p‘logp<p+’

logn
0p = | —|.
Y [logp]

We have thus established that
#n = H p[log n/ logp],

p<n

which was to be shown.
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(177) It is easy to see that

_J p ifpn,
(p,p+7‘)—{1 if pfr

and that

plp+r) ifpfr.

(178) We have that p|(8ad — bd) — (8bc — bd) = 8(ad — be), and therefore that
p|(ad — be), since p is odd.

(179) Since p is odd, it is clear that p +p + 2 = 2(p + 1) is a multiple of 4. On
the other hand, since p + 2 is prime, the prime number p must be of the
form 3k + 2. It follows that p+p+ 2 =2p + 2 = 2(3k + 2) + 2 = 6k + 6,
a multiple of 3. Hence, the result.

(180) Set n = pr, where p is a prime number. If p # r, then p and r show up as
factors in the product (n — 1)! and therefore n divides (n — 1)!. If r = p,
then n = p? and

(n=1!=@*-1)@*-2)---p---1.
Hence, in order for (n—1)! to be divisible by p?, we must have that (n—1)!
contains the factors p and 2p; that is we must have p? —a = 2p for a certain
integer o > 2. But this is possible only if we choose a = p(p—2) (provided
that p > 2). If p = 2, that is n = 4, it is clear that the result does not
hold.
(181) If it is the case, we will have
1 1
nint1) n!,  that is ntl (n—1)L
2 2
This means that we are looking for the positive integers n for which there
exists a positive integer M = M (n) such that
1 —1)!
(n—l)!:MM, that is 2(n ) =M
2 (n+1)
If n+ 1 = p, with p prime, then n = p — 1, in which case M is not an
integer. Therefore, n + 1 must be composite; that is n + 1 = pr, where
p is prime. If p and r can be chosen in such a way that p # r, then p
and r will show up as factors in the product (n — 1)!, implying that M is
an integer. If the only possible choice for p and r is p = r, then we have
n+1=r%and

2(n — 1) =2(p* —2)! =2(p* - 2)(p* - 3)---p--- 1.

Hence, in order for 2(n — 1)! to be divisible by p?, we must have that
2(n —1)! contains the factors p and 2p; that is we must have (p?> —a) = 2p
for a certain integer o > 2. But this is possible only if a = p(p — 2)
(provided p > 2). It follows that the result is true for all integers n such
that n  p — 1, p being an odd prime number.

(182) (AMM, Vol. 81, 1974, p. 778). From the solution of Problem 181, we
have that if n > 5 is a composite integer, (n —2)!/n is an even integer and

therefore that |
2 n

+r if p|r,
[p,p+r]={p 7
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On the other hand, if n = p is prime, then by Wilson’s Theorem, (p—2)! =
—(p—1)!'=1 (mod p), in which case there exists an integer k such that
(p—2)! = kp + 1 and therefore

(0=2) =2
p p
Hence, if p > 5, then 4|(p — 2)! and therefore

.7 ((p—2)! . . (T T
sm2p( ’ ) —s1n2((p 2)! 1)—sm<2(p 2)! 2) = -1
These two cases allow us to conclude that for n > 5, the term indexed by
n in the sum is 0 if n or n + 2 is composite and is (—1)(—1) =1 if n and
n + 2 are prime. Note that the term “2” is necessary in order to count
the pairs of twin primes (3,5) and (5, 7).

Assume that there does not exist any prime p between n and n!. Then,
consider the number N = n! — 1. If N is prime, we have found a prime
number between n and n!, a contradiction. If N is composite, then there
exists a prime number p such that p < n and p|(n! — 1); but since p|n!, we
must have p|1, again a contradiction. Thus, the result.

The answer is NO. Since 1 + 2 + 22 + ... 4+ 2" = 27+l _ 1 it is easy to
check that 142+ --- 4 2% can be written as

20 -1=2%*-1=8-1=(8-1)(82+8+1),

a composite number, while the preceding number, that is 255, is also
composite.

REMARK: The prime numbers of the form 2* — 1 are called Mersenne
primes, and it is not known if there exist infinitely many of them. See the
next problem.

It is easy to see that

a"—1=(a—1)(@" ' +a" 2+ --+a+1)

where the second factor is larger than 1. This implies that a —1 = 1; that
is a = 2. Moreover, if n is composite, then there exist integers r and s
such that n =rs, r > 1, s > 1, and therefore

A" —1=2"—1=(2"—1)(27CV ... 427 +1),

where each factor is larger than 1, which contradicts the fact that a™ — 1
is prime.

If a is odd, then a™ + 1 > 4 and is an even integer, hence not prime. On
the other hand, if n has an odd factor r > 1, then there exists a positive
integer m such that n = mr, in which case

a"+1=(am+ 1)(am(r_1) —qmr=2) 4 gy 1).

Since r > 3, both factors are larger than 1, and this contradicts the fact
that a™ +1 is prime. Hence, n has no odd factor larger than 1 and n must
be of the form 2.

(TYCM, Vol. 13, 1982, p. 208). We reduce these expressions modulo 3.
Since 22" + 1 with z > 0 is of the form 2%t + 1 with ¢ > 0, it follows that

22 11=2241=(22'+1=2 (mod 3).
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But 2*—1=0o0r1 (mod 3) depending whether z is even or odd. Hence,
(2 —1)(2¥ —1) =0or 1 (mod 3), and since 22° + 1 = 2 (mod 3), the
result follows.

The result is true for n = 1, since in this case it is easy to check that
Fo=2"+1=3and ; —2=2% +1-2=5—2=3. Assume that the
result is true for n = k and let us show that it implies that the result is
then true for n = k 4 1. Indeed, by the induction hypothesis, we have

FoFyFy--- Fo_1 Fy (Fy — 2)Fp = (22’° _ 1) (22'“ + 1)

= 92 1 (22“1 + 1) —2=Fp1 -2,

as required.
Assume the contrary, that is that there exist two integers m > n > 0 such
that (F,,, F,,) = d > 1. Then, using Problem 188, we have

(*) FOFl"'Fm—l :Fm — 2.

Since F, is one of the factors on the left of (*), it follows that d|2. But
since each Fermat number is odd, it is impossible to have d = 2. Hence,
d =1, and the result follows.

With the help of a computer, we find that this number is 29 341.

From Problem 189, all Fermat numbers are pairwise relatively prime.
Each Fermat number therefore introduces in its factorization at least one
new prime number. As a consequence, the Fermat numbers generate in-
finitely many prime numbers.

To prove part (a), we proceed by induction. First of all, it is clear that
32|23" 4+ 1. Assuming that 3*|fx_, for some k > 2, we will show that this
implies that 3**1|f;. Using the fact that a3 + 1= (a+1)(a? —a +1), we
have

(%) Tk

Il

_1\ 3
2 1= (2) 41

i (23’°‘1 + 1) ((23’°‘1)2 - (23'“’1) + 1)

say. The expression A is divisible by 3* because of the induction hypoth-
esis. It therefore remains to show that 3|B. But B = a? — a + 1, where

a=2"""" =2 (mod 3). It follows that
B=a’-a+1=22-24+1=0 (mod 3),

as required.

To prove part (b), we only need to observe that f,_1|f», as is implied
by the second line of ().
(This problem can be found on page 64 of the book of D.J. Newman [24]).
Consider the arithmetic progression 15k+7, k = 1,2, ..., which by Dirich-
let’s Theorem contains infinitely many prime numbers. If p = 15k + 7, it
is clear that p — 2 = 15k + 5 is a multiple of 5 and that p+2 =15k + 9 is
a multiple of 3, which proves the result.
Since

216 — 92" — 65536 = 154 (mod 641),
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we have
2%2 = (219)2 = (154)? = 23716 =640 = —1 (mod 641),

and the result follows.

First of all, it is clear that Fy = 22° +1 = 17 = 7 (mod 10). Therefore,
it is enough to show that if F, = 7 (mod 10) for a certain k£ > 2, then
Fy11 =7 (mod 10). Indeed, we have by the induction hypothesis that

N 2
Fepr=2"" +1= (2?) +1

_—:((22k+1)—1)2+15(7—1)2+1:3757 (mod 10),

as required.

We proceed by contradiction in assuming that 2* divides an integer m €
E\ {2}, in which case m = 2¥r for a certain integer r > 1, implying that
2k+1 is in the set E, which contradicts the minimal choice of 2*.

For the second part of the problem, assume that the given sum is an
integer M. The smallest common multiple of the elements of E must be
of the form 2*¥m, where m is an odd number. Multiplying the sum by
m2k—1, we obtain

n
1
m2k—1 § — =m2F 1M,
=17

But when the left-hand side is expanded, one of the n terms is equal to
m/2 while all the others are integers, which yields a contradiction since
m is odd.
We have

25n —1= (25)71 1= (25 _ 1)(25(n—1) + 25(77,—2) 4ot 25 + 1),

which implies that the number 2°™ — 1 is divisible by 31 for any positive
integer n. Hence, p = 31 will serve our purpose.
We have M, =3, My =7, M3 = 31, My = 211, M5 = 2311, which are all
prime numbers, while Mg = 59509 and M7 = 1997 - 277 are composite.
REMARK: Using the MAPLE program
> for k from 8 to 10 do print(
> M(k) = ifactor(product(ithprime(i), i=1..k)+1)) od;
we obtain Mg = 347-27953, Mg = 317-703763 and M;y = 331-571-34231.
As of 2006, we still don’t know if the sequence { M} } contains infinitely
many prime numbers; with the help of a computer, we can nevertheless
easily establish that the only values of £ < 1000 for which Mj is a prime
number are: 1, 2, 3, 4, 5, 11, 75, 171, 172, 384, 457, 616 and 643.
Any prime number dividing pips---pr + 1 is distinct from any of the
primes p1,p2, ..., pr; hence, it follows that

Pr+1 Sp1p2- - pr+ 1,
and using an induction argument, we obtain that
Prp1 <220.220 .92 02 1] <97

which proves the result.
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(200) Let z > 3. Choose r € N such that

(1) e <x<e

We easily observe that such a choice of r is unique. The left inequality
of (1), the fact that m(x) is a nondecreasing function and the relation
p, <2277 allow us to write

(2) (@) > (e ) > w2 ) > w(p) =7
The right inequality of (1) guarantees that
3) r > loglog x.

Combining (2) and (3), we obtain the required inequality.
(201) Assume that there is only a finite number of prime numbers of the form
4n + 3. Denote them by

G <qg<...<q

and consider the number
(%) N=4qq g — 1 =4(q1q2- - - qx — 1) + 3,

which is clearly of the form 4n + 3. If N is prime, then we have found
a prime number of the form 4n + 3 larger then gi, thereby yielding a
contradiction. If N is composite, then N cannot be the product of only
prime numbers of the form 4n+1 (since N would then also be of the form
4n+1). Therefore there exists a prime number g of the form 4n + 3 which
divides N. If q is equal to one of the g¢;’s, that would mean, in light of
relation (x), that g|1, again a contradiction. Hence, ¢ > ¢x and the result
is proved.

(202) Assume that there is only a finite number of prime numbers of the form
6n + 5. Denote them by

G <q<...<gg

and consider the number
(*) N =6q1q2---q —1=6(q1q2"--qx — 1) +5,

which is surely of the form 6n + 5. If N is prime, then we have found
a prime number of the form 6n + 5 larger than gi, thereby yielding a
contradiction. If N is composite, then N cannot be the product of only
prime numbers of the form 6n + 1 (since N would also be of the form
6n+1). Therefore there exists a prime number q of the form 6n + 5 which
divides N. If q is equal to one of the g¢;’s, that would mean, in light of (x),
that ¢|1, again a contradiction. Hence, q¢ > gx and the result is proved.
(203) It is enough to consider the polynomial

f@)=(z—pi)(x—p2)---(z—pr) + 1,

where p; stands for the k-th prime number.
(204) The answer is NO. Consider such a number N with 2k + 1 digits, k£ > 2.
We first notice that, for each integer k > 1,

(14102 +--- 4+ 10%)(102 — 1) = (1022 — 1) = (105! — 1)(10**! 4 1).
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Hence,

(105+1 — 1)(10%+1 +1)
9-11 '
Since k > 1, both factors on the right-hand side, after dividing by 99,
have two factors larger than 1, so that the number N is composite. On
the other hand, in the particular case k = 1, we find the prime number
101.
(205) Let G, = 22" + 5. First of all, Gg = 2! + 5 = 7, which is prime. We will
show that all the other G,,’s, that is those with n > 1, are divisible by
3. To do so, it is enough to prove that 22" =1 (mod 3). But this is true
since

1+10%+ - 4+ 10% =

n n—1 n— n—
22" = (22)> =4 =1"" =1 (mod 3).

Clearly, we could have obtained the same result if instead of 5 we would
have used a number of the form 3k+ 2, except that in this case, one should
first check whether 2 + 3k + 2 = 3k + 4 is prime or not.

(206) The answer is NO. Indeed, the next gap in the list is 14; it occurs when
DPry1 — Pr = 127 — 113 = 14, while the first gaps of 10 and 12 occur
respectively when p,41 —p, = 149—-139 = 10 and p,4+1 —p, = 211-199 =
12.

(207) Let S be this series; then

1 1 1 1 1 1 1
5= ) Telms)

p p
1 1 1 > 1
zp:zﬂl—% zz,:p(p—l) nzz:zn(n—l)

In fact, the exact value of S is 0.773156669. .. .
(208) We have successively

M ) SE R ),
n=1

where we used the fact that 3, u(d) =0if r > 1 and 1 if r = 1.
(209) The result is immediate for 2 < n < 6. On the other hand, since

> 1=[\/%]—[\/ﬂ+12\/2_n—1—\/ﬁ+1=(\/§—1)\/ﬁ>1,

n<m2<2n

for n > 6, the result follows for each integer n > 2.

(210) Assume the contrary, that is that n3 = p+m?>. We then have n®—m?3 = p,
which implies that (n—m)(n?+mn+m?) = p and therefore that n—m = 1
and n? +mn + m2 = p. This shows that n? + n(n — 1) + (n — 1)% = p,
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that is 3n? — 3n + 1 = p, which contradicts the fact that 3n? — 3n + 1 is
composite.

The prime numbers p < 10000 of the indicated form are 2, 5, 17, 37, 101,
197, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101
and 8837. Given n > 1, we have n =0, 1,2,3,4,5,6,7,8,9 (mod 10), in
which case n? = 0,1,4,9,6,5,6,9,4,1 (mod 10) and therefore n? + 1 =
1,2,5,0,7,6,7,0,5,2 (mod 10). Since the numbers n? + 1, congruent to
0, 2, 6 or 5 modulo 10, are composite, we are left with the numbers n
for which n2 + 1 = 1,7 (mod 10). Finally, since the numbers n = 4,6
(mod 10) are such that n?2 + 1 = 7 (mod 10) while only the numbers
n =0 (mod 10) are such that n? +1 =1 (mod 10), this explains why the
digit 7 seems to appear twice as often.

This follows from the fact that, from Theorem 27, we have

S PR P | PR Pl

p<n p<n p<n

where we used the fact that

LR T _1(1+1+1+ )_ 1

p P P p p P p—1
Every positive integer n > 6 can be written as n = 6k, n = 6k + 1,
n=6k+2 n=06k+3, n=06k+4orn=6k+ 5, in which case the
corresponding values of n? + 2 are respectively multiples of 2, multiples
of 3, multiples of 2, of the form 6K + 5, multiples of 2 and multiples of 3.
It follows that only those n = 6k + 3 (with n? + 2 = 6K + 5) are possible
candidates for ensuring that n? + 2 is prime, thus the result.
Let N +1 be one of these numbers. If ¢ is prime, then i|N +¢ and N 41 is
composite. While if 4 is not prime, then i is divisible by a prime number
po < 1 < p, in which case pg|N + i and N + ¢ is composite.
We write n as

n=apl0* + ar_110" 1 + -+ + a210% + @110 + ay,

where k > 2 and where the a;’s are integers satisfying 0 < a; < 9, ax #
0. Part (a) is trivial. To prove (b), it is enough to observe that, since
4|10’ = 5727 for each integer j > 2, it follows that 4|a; 10+ ao if and only
if 4|n. To prove (c), it is enough to observe that, since 8|10 = 57 - 27 for
each integer j > 3, it follows that 8/a2100+ @110+ ap < 8|n. Therefore it
becomes clear that one can generalize this result as follows: Ifn > 1 is an
integer having at least k digits, then 2|n if and only if the number made
up of the last k digits of n is divisible by 2.

(Hlawka [19]). Let n > e® and set f(n) = Z 1. It follows that

p|n,p>logn

n> H p > (logn)f™

pln
p>logn
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and therefore that logn > f(n)loglogn; that is f(n) < (logn)/loglogn.
On the other hand, for n sufficiently large, we have

log [1- —— ) > -2
°8 logn/ = logn’
It follows that

0>log P(n) = Z log <1 - %) > f(n)log (1 — lo;n>

pln,p>logn
L, 2
logn = loglogn

>

Hence, lim log P(n) = 0, and the result is proved.
n—oo

(MMAG, April 1992, p. 130). Assume the contrary, that is that each
interval [n?, (n + 1)?] contains less than 1000 prime numbers. We know
that the sum of the reciprocals of the prime numbers diverges. Hence,
according to our hypothesis, we have

1 ad |
p n=

n=1 n2<p<(nt1)2 n2<p<(n+1)2
=1 =1

- Z — (w((n +1)%) - 7T(n2)> < 1000 Z 5 < Foo,
n=1 n=1

a contradiction.

We only need to show that if z < y are any two positive real numbers,
then there exist two prime numbers p and ¢ such that z < p/q < y. It is
obvious that

7(qy)
1 m{qy) — m(qx zwqm( —1).
1) (ay) ~ wlaz) = m(aw) (70
On the other hand, using the Prime Number Theorem, we have
2) lim T _Y

q—oo T(qr) T

It follows from (1) and (2) that lim,_,o(7(qy) — m(gz)) = +oo. This
means that for ¢ sufficiently large, say ¢ = qo, there exists at least one
prime number pg such that gox < pg < qoy, in which case we have

r < Po <Y,
do
as required.

Assume that q; < g2 < ... < g, are prime numbers such that

1 1
— + “ e + —=n
5] qm
for a certain integer n > 1. Then,
1 1 1 7
e — e
q1 q2 dm q2:dm

where r is an integer. In this case, the product ¢ - - - ¢, is divisible by g,
which is impossible.
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We have successively

Xi- X Y-y Yi-Y Yo

n<z < n<z mp<x N < m<z/p
P(n)>vE Va<pse P(n)=p Va<pse P(m)<p Vi<psz P(m)<p
= —_ = —_ + - -
Vaz<plz b Vz<p<lw P Vz<p<lz P p

= zlog2+2R(z) — 2R(Vz) + S(z),

say, where |S(z)| < m(z). Relation (3) then follows from (1) and (2). To
show the last part, it is sufficient to observe that, since log2 = 0.69...,
then if z is sufficiently large,

1 1 2
— 1> - 1=log2+T —-.
. Z >~ Z 0g2+ (:c)>3

n<z n<z

P(n)>Vn P(n)>x

Let p1,p2,...,pr be the prime numbers < /x. Then, all odd integers
< z which are not divisible by p1,pe,...,p, are prime numbers. Conse-
quently, w(z) — 7(\/z) counts the number of prime numbers > /z. But
the number of positive integers < x which are divisible by none of the
primes p1,pa,..., P, is equal to

W e [Fe 2 2] v ]

1<icj<r LPiPj 1<i<j<k<r LPiPiPk

x
2]
pl Y .pr
Indeed, let n be an integer < x which is divisible only by the prime
numbers p1, po, - . ., pr; in this case, the sum is equal to

() o

while if n is not divisible by any of the primes p1,...,p,, then its contri-
bution to the right-hand side is obviously 1.
REMARK: Observe that expression () can also be written as

> oum |3

n|pip2---pr

Let n > 5. From Conjecture A, if n is even, there exist two prime numbers
p and ¢ such that n — 2 = p + q, that is n = p + ¢ + 2; while if n is odd,
there exist two prime numbers p and g such that n — 3 = p + ¢, so that
n = p+ q+ 3. In both cases, Conjecture B follows.

Let n be an even integer > 4. From Conjecture B, there exist three prime
numbers p, g, 7 such that n+2 = p+ g+ r. Since n + 2 is even, it is clear
that one of the three prime numbers p, ¢, must be even, that is equal
to 2. Assume that r = 2. It follows that n = p + ¢, which establishes
Conjecture A.

(This result is attributed to Min4¢; see P. Ribenboim [29]). First of all,
we observe that if n # 4 is not a prime number, then n|(n — 1)!. Indeed,
either n = ab, with 2 < a < b < n — 1, in which case n|(n — 1)!, or



148 1001 PROBLEMS IN CLASSICAL NUMBER THEORY

n = p? # 4, in which case 2 <p<n—1=p? —1 and 2p < p? — 1, which
implies that n|2p? = p - 2p, an expression which divides (n — 1)!.

To prove the stated relation, we analyze separately the cases “j prime”
and “j composite”.

If j is prime, then by Wilson’s Theorem, there exists £ € N such that
(= D!+ 1=kj so that

[(j—lj)!+1_ [(j;mﬂ _ [k_ [’“‘ﬂ] k= (k—1)] =1

If j is composite, 7 > 6, then j|(j — 1)! in light of the above observation.
Therefore, there exists an integer k such that (j —1)! = kj. It follows that

oot 2] oo

J J

| |
3 I ! — [3—” = 0, which completes the proof

Finally, if j = 4, we have [ 7

of Minaé’s formula.
(224) (a) We have

A(n) =

™

n
1:(1;"1: 1:[5].

r

IA
2[3

)

It is therefore easy to see that the quotient A(n)/n tends to 1/a as

n — OC.
(b) We have
WEED SIEED SEEEE SERD ST oF
m<n m<n ar<n m<n r<2
a|lm a|lm, ag|lm - la,aglim -
S ENURE
< n a [a’a’o]
"= Ta,ag]

It is therefore easy to see that the quotient A(n)/n tends to 1 — [a—laoj
as n — oo.
(c) Using the inclusion-exclusion principle, we have

n—Am) = Y > 1- Y > 1

1<i<r msn 1<i<j<r m=<n
-7 gm 2;95|m
+ E § 1_“_+(_1)7'+1 E 1
1<i<j<k<r m=sn m<n
23959k |m 9192 -qr|m
n n n
= > |- + )
1<i<r 4 1<i<j<r %95 1<i<j<k<r %959r

e (—1)H [L] ,

q192 - - - qr
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It follows that
A(n) 1[n 1] n
-2k 2R
1<i<r v 1<i<j<r v

Bl ez

1<i<j<k<r q192- - - 4r

But, as n — oo, this last expression tends to

Zl_zl+z v ..

1<<r B 1<ici<r B Gk BT

+(—1)T+1; =— H (1 - l) +1,

q192 - gr i

as required.
(225) We will show that

1 2 =
dA=-<-=dA
dA 3 <3 A
To do so, we prove that
) A(22k+1) . . A(22k) 1
R e -
Indeed,
AQ* = N 1+ Y 1+ Y 14+ >
1§n<2 22£n<23 24§"<25 22k§n<22k+1

_ 1+(23_22)+(25_24)+‘”+(22k+1_22k)
= 1+224244... 4 2%

= 1+4+4%+---+4F = il =3(4’“+1—1).
4-1 3
It follows from this that
. A(22k+1) . l4k+1 1 _ g
koo 22k+1 k—oo 3 24K 3

On the other hand,

A% = Y 1= > 1= > 1:%(4’“-1),

neA neA neA
n<22k n<22k—1 n<22(k—1)+1

which implies that
y A(2%k) m 14—-1 1
im —-—+~ = —— =,
k—o0 22k k—oco 3 4k 3
(226) To each element a; € A, we associate its largest odd divisor d;. It is clear
that all the d;’s are distinct; indeed, if d; = d; for two positive integers
i # j, then a;la; or ajla;, which is possible only if ¢ = j. It follows that
A(2n) < n, since there are no more than n odd numbers < 2n. Hence,
the result.
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To each element a; € A, we associate its largest prime factor g;. Let
B; ={n € N:p(n) > q;}, where p(n) stands for the smallest prime factor
of n. Let also C; = a;B; = {a; - b : b € B;}. The sets C; are disjoint;
indeed, if a;r = a;s (with ¢; < g;), where r € B; and s € Bj, then a;|q;,
which is possible only if ¢ = j. It follows that, for each positive integer k,
we have

k
Y doi<t
i=1
From (a) and (c) of Problem 224, we have
1 1 1
dC;=—dB; = — [] (1—),
a; a; o p
p<a;
so that
(1) i ! 11 (1 1) <1
— a; p) =
=1 " p<q
But from Mertens’ Theorem, we have that

1 1 1
2 1—= > .
@ H < p) > logg; ~ loga;

p<qi

The result then follows by combining (1) and (2).

Part (a) is obvious. To prove (b), first observe that the norm of every
element of E is always > 5. Assume that 3 = (a+bv/—5)(c+dv/—5); taking
the norm, we have 9 = (a? + 5b%)(c? + 5d2). This is however impossible
since both factors on the right-hand side are larger than 5. Hence, 3 is a
prime belonging to E. We easily obtain that 29 = (3 +2v/—5)(3 — 2¢/=5)
and is therefore a composite number in E. Part (c) follows from the fact
that

9=(3+0V=5)-(3+0v=5) = (2+vV=5)(2—V-5).
Since

1 ifneA,

0 otherwise,

A(n) — A(n—-1)= {

we have that

n<zx 2<n<z
neA - -
1 1 A
= > A <__n+1) [](-?1
2<n<z n x
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Let n be a palindrome with 2r digits. Hence, there exist digits d; > 0,
ds,...,d, such that

n = di10* 7! £ da107 % 4. 4 d, 10" +d, 1077 - -
+d310% + dp10 + d;
= d (10771 4+ 1) + da (10772 +10) + - - - + d,. (10" + 107 1)
= di(10* 7" + 1) + 10do(10*" "2 + 1) + - - - + 10" 2d,_1 (103 + 1)
+10"71d,. (10 + 1).

The numbers 102+ + 1 for i = 0,1,...,r — 1 are all multiples of 11.
Indeed, using the Binomial Theorem, we obtain that

1 : 2+ 1 ke 12
107 41 =14+Q1-1)* ' =14)" ( A )(—1) 11241k — 1M
k=0

for some positive integer M, in which case the number n is divisible by
11.
It is enough to consider the next number, since

1442 = [6, 6,2]15 =6!+6!+2!.

Assume that two such representations exist, that is that there also exist
positive integers e; < eg < ... < e, such that

n=di!l+d!+---+d!=el+e!+---+e.l

We proceed by induction. If » = 1, then it is clear that d; = ey, in
which case the result is proved. Assume that the result is true for r — 1,
and let us show that it is true for r. Without any loss in generality, we
may assume that d,. > e,.. If d. = e,, then the conclusion follows by an
induction argument. We may therefore assume that d,. > e,., in which
case d, > e, + 1. We then have

(e + <At <dil +dol+---+d =€l +e)+---+e! <rel,

so that e, +1 < r and e, < r — 2. But the ¢;’s being distinct, we must
have e, > r, a contradiction, and the result follows.

(Sierpinski [39], Problem #194) Assume that an integer solution {z,y}
does exist. We then have

(+) 2241 = y*+(2¢)° = (y+20)(y? 2y +4¢2) = (y+20)((y—)*+3¢2).

Since ¢ = 1 (mod 8), we have 3¢ = 3 (mod 8). First of all, if y is even,
then

2=y +(2c)*-1=7 (mod 8),
a contradiction.

On the other hand, if y is odd, then y — ¢ is even and (y — ¢)? + 3¢?
is of the form 4k + 3. It follows that (y — ¢)? + 3¢? has a prime divisor
of the form 4k + 3, which is then itself a divisor of 2 + 1. But this
is impossible because we would then have that the congruence 2% = —1
(mod p) is solvable, which is false since (%1) = —1, where () stands for
the Legendre Symbol (see Definition 21).

As for the second part of the problem, the infinite set {8¢® — 1 | c =
1,2,3,...} will do.
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(Sierpinski [39], Problem #211) We observe that, for n > 4, we have

5ntd _pn =55t — 1) =5".24.39 =5%.24.5774. 39
=10*.5""*.39.

Therefore, 5°** = 5" (mod 10000). It follows that the block of the four
last digits of 5" repeats itself for each number 5"7%. We easily verify that
these “periodic” blocks are 0625, 3125, 5625 and 8125.

It is clear that it is enough to consider the cases of two and three cubes.
For a € Z, we have a® = 0,1,8 (mod 9). From this it follows that, given
any integers x and y, we have

23 +y3=0,1,2,7,8=0,+1,+2 (mod 9).

This implies that not all integers n = +3,+£4 (mod 9) can be written as
the sum of two cubes. Similarly, given integers z, y and z, we have

2 +y2+22=0,1,2,3,6,7,8=0,£1,42,+3 (mod 9).

This implies that not all integers n = +4 (mod 9) can be written as the
sum of three cubes.

(Anglin [2], p. 194). Let m be this integer. First of all, it is clear that
oo mom

is an integer. It is then easy to see that

m=m®+ (k+1)° + (k= 1)° + (=k)* + (=k)?,

which proves the result.

(The College Mathematics Journal, March 99, p. 144; solution by T. Amde-
berban). Let (m,n) be such a pair. We write m = dids---d,, where
di,ds,...,d, stand for the digits of m. We then have

10 ' <m<n=(d+da+--+d.)?* < (9r)?

an inequality which can hold only if » < 4. It follows that m < n <
(9 -4)?2 = 36%. Using a computer, one only needs to check all perfect
squares < 36. We then find that there is only one solution to this problem,
namely (m,n) = (132,16%) = (169, 256).

(Anglin [2], p. 4).

(a) We use induction. Assume that the result is true for each fraction
whose numerator is smaller than n (with n > 1), and consider the
fraction n/m, n < m, (n,m) = 1. Let » > 2 be the unique integer
such that

1
r—1°

1 n
room
We then have 0 < nr —m < n. But
n 1
m r

nr—m

mr

—m
is the

mr
sum of unitary fractions. Moreover, none of these unitary fractions
nr—m

Hence, using the induction hypothesis, the fraction nr

. This completes the proof.

1
is equal to 1/2, because — >
T mr
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(b) Here indeed is a counter-example:

3_1+1+1_1+1+1
73 11 231 4 7 928

(¢) The result follows immediately from the identity
4 _ 1 1 . 1
4m+3 m+2 (m+1)(m+2)  (m+1)4dm+3)’

REMARK: Paul Erdds made the following conjecture: For each integer
n > 4, the fraction 4/n can be written as the sum of three distinct unitary
fractions.

First of all, it is clear that if n is complete, we have v/10-10* < n < 10°. To
obtain the stated result, we can use the following MATHEMATICA program:

w={ };Do[If[Sort[IntegerDigits[n?11=={0,1,2,3,4,5,6,7,8,9},
w=Append [w,n1],{n,32000,100000}] ; Print [w]

‘We then obtain the 87 numbers: 32043, 32286, 33144, 35172, 35337, 35757,
35853, 37176, 37905, 38772, 39147, 39336, 40545, 42744, 43902, 44016,
45567, 45624, 46587, 48852, 49314, 49353, 50706, 53976, 54918, 55446,
55524, 55581, 55626, 56532, 57321, 58413, 58455, 58554, 59403, 60984,
61575, 61866, 62679, 62961, 63051, 63129, 65634, 65637, 66105, 66276,
67677, 68763, 68781, 69513, 71433, 72621, 75759, 76047, 76182, 77346,
78072, 78453, 80361, 80445, 81222, 81945, 83919, 84648, 85353, 85743,
85803, 86073, 87639, 88623, 89079, 89145, 89355, 89523, 90144, 90153,
90198, 91248, 91605, 92214, 94695, 95154, 96702, 97779, 98055, 98802,
99066.

Therefore, there exist only 87 complete numbers. The smallest com-
plete number is therefore 32 043.

As for the second question, it is easy to see that if n is complete, then
by definition, the sum of the digits of n? is

0+1+2+3+~-+9=¥=45,

a number divisible by 9. It follows that n is a multiple of 3 and therefore
not prime.
Assume that p = 23 + y® with z,y € N. Then,

p=(z+y)(@® —ay+y°) = (@ +y)((z —y)* + 2y).

Since x + y > 2, we must have

p=x+y and (x—y)? +zy=1,
which proves that £ = y and zy = 1 and therefore that x = y = 1 and
p=2.
First let p = 23 — y3, with z,y € N. Then,
p=(z—y)(e®+zy+y°),
so that z —y =1 and
p=2"+zy+y’ =Y+ 1>+ @+ Dy+y* =3 +3y+1
=3y(ly+1)+1,

which proves the first implication.
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Conversely, assume that the prime number p is of the form p = 3k(k+
1) + 1 with k € N. Then, letting x = k + 1 and y = k, we obtain

3k(k+1)+1=3k>+3k+1=(k+1)>+ (k+ 1)k + k2
= 2 +ay+y’ = (e -y’ +ay+y’) =2° -y,

and the result is established.
The ten smallest prime numbers of this form are 7, 19, 37, 61, 127,
271, 331, 397, 547 and 631.
REMARK: As of 2006, we still do not know if there exist infinitely many
prime numbers of this form, a result which is actually a consequence of
Schinzel’s Hypothesis H (stated on page 12).
First of all, if @ and b are two even integers, it is easy to see that a? — b2
is of the form 4k, while if a and b are two odd integers, a? — b? is of the
form 8k. On the other hand, if one of a or b is even and the other odd,
a®? — b? is odd. These observations prove that the condition is necessary.
Assume now that n is not of the form 4k 4 2. This means that either
n is odd or it is of the form 4k. If it is odd, then n — 1 and n+ 1 are both
n+1

even, in which case "T‘l and *7= are integers. It follows that

=) -5

On the other hand, if n is divisible by 4, then

= (3 ()

We have thus proved that the condition is sufficient, and the result is
proved.

REMARK: It is interesting to observe that this result allows one to directly
solve Problem 2, that is without using the expression for Y ,_, k3.
(Contribution of Nicolas Doyon) It is easy to notice that the decimal rep-
resentation of an automorphic number ends with a 5 or a 6. We will
display an algorithm which allows one to construct infinitely many auto-
morphic numbers ending with the digit 5. So let n be an automorphic
number with r digits ending with the digit 5. We now show that the num-
ber m made up of the » + 1 last digits of n? is also automorphic. Since
n is automorphic, we can write m = d - 10" + n for a certain nonnegative
integer d. We then have

m? =d%-10%" + 2nd - 10" + n2.

Since n ends with the digit 5, the number 2n-10" ends with r+1 zeros. The
r+1 last digits of m? are therefore equal to the r+1 last digits of n?, which
are in fact equal to the digits of m. Hence, m is automorphic. Iterating
this process, we conclude that there exist infinitely many automorphic
numbers.

This last algorithm allows one to build the sequence of automorphic
numbers, whose first terms are as follows : 5, 25, 625, (0625), 90625,
890625, 2890625, 12890625, 212890625, . . . .

A variation of this algorithm allows one to build infinitely many au-
tomorphic numbers ending with the digit 6.

Il

p
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(244) (Contribution of Nicolas Doyon) In the case where one of the digits of n is
equal to 0, the result is immediate. We may therefore assume that d; # 0

for1 <i<r.
We will show that the difference A(n) := n — dydy - - - d, is minimal
when dy = dy = ... = d,_; = 1. Let us however start by showing that

the difference n — dqds - - - d,- attains its minimal value when d; = 1, that
is if the digits da,...,d, are fixed; then the number n = [dy,do,...,d;]
for which A(n) is minimal is the one with d; = 1.

Soletn =dydy---d, and n' = (dy +1)dy - - - d,.. Since n’ = n+10""1,
we have
n —(dy+1dy-dp =n —didy---dp + 10" — dods - - - d,.
Since 107! —dads---d, > 10771 — 971 > 0, it follows that

n — (dl +1)d2dr >n—ddy---d,,

as we wanted to show.

Assume now that n = [1,1,...,1,dgs1,dk+2,...,d;]. Let us show
———’
k

that the difference n — dgy1dgy2 - - d, is minimal when dy; = 1.

Set n’ = [1,1,...1,dgs1 + 1,dgio,...,d;]. Since n’ = n+ 107"F1

——
k

we have

n' — (dgy1 + 1dgsz2 -+ d
=n— dpp1dpta - dp + 107 — dyiodiis o dy
Since 10"~%~1 — dy oditz - --dp > 107"k=1 —97=k=1 5 0 it follows that
n' — (dgs1+ Ddigz - -dr >n—dpyrdiya - dy

and therefore that the difference n — dgy1dgs2---d, is minimal when
dr+1 = 1. By induction, we obtain that the difference n — dyds---d,

is minimal when n =[1,1,...,1,d,]. We conclude from this that if all the
N———
r—1
digits of n are different from 0, n — didy - - dy > &...10 > 1071, thus
r—1

completing the proof.
(245) (Contribution of Nicolas Doyon) We will show that this number is 97247.

Let n be a number having this property and whose digits are dy, ds, . .., d,.
We must then have

n=d;+dy+---+d>+didy---d,.
From the preceding problem, and since n > 9, we have

10T'1 <n-— dldg . 'dr.

We then have the inequalities

Wl<dd+dy+--+d><r-9.

But 10" ! < r- 9% does not hold if » > 7. It follows that n cannot have
more than 6 digits and is therefore smaller than 106. Using a computer, we
easily find five numbers satisfying the given property, namely the numbers

1324, 4150, 16363, 93084 and 97247.
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(246) Let a1 = 2, az = 12, a3 = 112 and a4 = 2112. Having determined
ag—1 = 27 1by_1, k > 3, here is the algorithm allowing us to determine
ag:

o if by_1 is odd, set ar = 1071 + a;_q;

o if bp_1 is even, set ar =2- 101 + ap_1.
It is then easy to check that the number a; thus chosen satisfies the
conditions (i), (ii) and (iii). Using induction, we easily prove that this
sequence is unique. The first 14 terms of the sequence are 2, 12, 112, 2112,
22112, 122112, 2122112, 12122112, 212122112, 1212122112, 11212122112,
111212122112, 1111212122112 and 11111212122112.

(247) In fact, it is enough to prove that the smallest number n such that s(n) = k
isn = (a+1)10° — 1, where b = [k/9] and a = k — 9b. First of all, clearly,
in order for n to be as small as possible, the digit 9 must appear as often
as possible and at the end of the number n. But the maximal number
b of 9’s that one can place at the end of n is b = [k/9], and to obtain
s(n) = k, the first digit of n must be a = k£ — 9b. The number n is
therefore n = a99...9. Hence, n = (a + 1)10° — 1, as was to be shown.

(248) (This is part of the problem proposed in Problem #10605 [1997,p. 567]
in AMM by J.W. Borwein and C.G. Pinner; solution by D. Bradley, 106
(1999), p. 173.) For m fixed, set f(n) = n(n — m)/(n? — mn + m?). We
then have

It is clear that the product is then telescopic, in which case we obtain

m—1 m—1
P(m) = fem) ] f) = [] £m)
n=1 n=1

Since
n(n? — m?)
fm =",
we have
m—1 m—1 m—1 m—1 n4+m
for = JIn-Ile-m)- I 50
n=1 n=1 n=1 n=1n +m
m—1 n+m
= (=1t —1N2. —_—
meem =0 T s
= (1) (N2 m2. T P
O m= o TT 5
. m+1 5 - n+m
= (-1) (m!) gm,

as required.
(249) We will show that the numbers 1, 2, 145 and 40585 are the only ones with
this property. Indeed, let n be such a number. Then,

(%) n=d!+d)!+---+d,!,
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where dy,ds,...,d,. are the digits of n. By trial and error, we end up
seeing that n = 1, n = 2 and n = 145 satisfy relation (x). On the other
hand, we can show that the number of positive integers n satisfying (*)
must be finite. Indeed, it is clear that such a number n must satisfy the
double inequality

10 <n=di!+do!+---+d! <r-9 = 362880r.

But 10"~! < 362 880r does not hold if » > 8, that is if n > 107. Therefore,
any solution of (*) must be smaller than 107. Hence, using a computer,
it remains to examine each number n < 107 to check if it satisfies the
condition (%), a process that reveals that the additional number is indeed
n = 40585.

We will see that this number is n = 2592, because we have 2592 = 25 . 92,
Assume that the number n = dids - - - doy, satisfies the property

(%) n=df*-d5---dgt .
Then, it is clear that
10*1<n<k-9°

an inequality which can only be satisfied if ¥ < 5. This proves that there
exist only finitely many numbers with this property. But this also means
that it is also possible, theoretically, that such a number n could have as
many as 10 digits. We should therefore find a way to limit the number of
computations in order not to have to check each number n < 10'°. Such
a task is possible, because the only possible factors of any n satisfying
(x) are 2, 3, 5 and 7 (since its digits belong to the set {0,1,2,...,9}). It
follows that n is of the form

n=2%3%.57.7°

for certain nonnegative integers o, 3,7, d. Since 2% < 100 only if a < 33,
37 < 1010 only if 8 < 20, 57 < 1019 only if v < 14, and 7% < 100 only if
6 <11, it is easy to see that the number of possible candidates is at most
34-21-15-12 = 128520.
Hence, using MATHEMATICA, we can write the following program:
Do[n=2"a*3"b*5”c*7°d;v=IntegerDigits[n];r=Length[v];
If [EvenQ[r]&&(Apply[Times,Table[v[[2%i-1]1]1,{i,1,x/2}]1]!
=0) &&(Product[v[[2*i-111"v[[2*il],{i,1,r/2}]1==n),
Print[n," ",Factorlnteger(n]]],{a,0,33},{b,0,20},
{c,0,14},{d,0,11 }]
a program that reveals only the number n = 2592 = 25 - 3* (see Dudeney
9]).

Such a number n must satisfy
1077 <n<r-9+7-9 =738,

a double inequality which does not hold if » > 6. We must therefore have
r < 5, that is n < 10°. Using a computer, we then find that the only
numbers having this property are 12, 30, 666, 870, 960 and 1998.

It follows from the relation

(x) F=g2brr  (1<r<2b
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that the number n = ¢2* — 1 trivially satisfies the inequality n < 3*.
Hence, the only admissible positive values for the z;’s in the representation

nz;c’f—i—x’j—l—---—l—:c,’f
are x; — 1 and z; = 2. It follows that

n=2F42F 4. 42k 41414.  41=(¢g-1)-2F+(2F-1) 1.

q—1 2k—1

Since from (*) we have ¢ = [(3/2)¥], we have thus established that

3 k
2 7
as required.

The required number is 69: indeed, we have 692 = 4761 and 69 = 328 509.
To show uniqueness, we first observe that 47 < n < 99, since 462 = 2116
and 463 = 97336 gather together only 9 digits, while 100% and 1002 already
have 11 digits. Finally, using a computer and examining the candidates
47, 48, ..., 99, we easily check that 69 is the only number with this
property.
The required number is 6534: indeed, we have 6534% = 42693156 and
65343 = 278957081304. To show uniqueness, we first observe that 4642 <
n < 9999, since 46412 = 21538881 and 46413 = 99961946721 gather
together only 19 digits, while 100002 and 100003 already have 21 digits.
Finally, using a computer and examining the candidates 4642, 4643, ...,
9999, we easily check that 69 is the only number with this property.
We will show that there exist exactly 10 integers having this property,
namely 497375, 539019, 543447, 586476, 589629, 601575, 646479, 858609,
895688 and 959097. To show that these numbers are the only ones with
this property, we first observe that 464159 < n < 999999. Finally, using
a computer and examining the candidates 464159, ..., 999999, we eas-
ily check that 497375, 539019, 543447, 586476, 589629, 601575, 646479,
858609, 895688 and 959097 are the only numbers with this property.
The 4-digit vampire numbers are 1260 = 21 - 60, 1395 = 15 - 93, 1435 =
35-41, 1530 = 30-51, 1827 = 21-87, 2187 = 27-81 and 6880 = 80-86. The
following is a MATHEMATICA program which generates all 4-digit vampire
numbers:

Do[r=Length[v=Select [Divisors[n], (n/#<100)&&(#<100)

&% (#<N[Sqrt[n]]1)&]]; Dold=v[[i]];

If[Sort[Join[IntegerDigits[d],IntegerDigits[n/d]]]

== Sort[IntegerDigits([n]],

Print[n," = ",d," x ",n/d]],{i,1,r}],{n,1000,9999}]

gk)>q—1+2F —1=2_2449g=2F—2+

REMARK: Using a similar program, we find 155 vampire numbers with
six digits and 3382 with eight digits (see Weisstein [40]).

Using a computer, we quickly notice that the numbers 1, 136, 153, 244,
370, 371, 407, 919 and 1459 are the only solutions n < 10* of equation (*)
93(g3(n)) = n. To prove that there is no other solution, we will show that
if n satisfies (x), then n < 10%, which will be enough to establish that the
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above nine numbers are indeed the only solutions of (). Since, for each
number n with r digits, we have

107 < n < 107,

it is clear that r < log;yn + 1, so that if n is a solution of (x), we shall
have

ga(n) < 9% r =729r < 729(log;on + 1) < n,

this last inequality holding if n > 10*. Therefore, to find all the solutions
n of (%), we only need to examine one by one each number n < 9999.
First of all, we observe that if f(n) > n for a certain positive integer
n= d1d2 ce dr, then

10T_1<n=d1d2---dT<f(n)=d1!+d2!+~--—|—dr!§r~9!.

But 107! < r-9! is only possible if r < 7, that is if n < 107. Hence,
it remains to find the largest integer n < 107 such that f(n) > n (since
if n > 107, we necessarily have f(n) < n). The following MATHEMATICA
program does that:

k=1;While[f[n=10"7-k]<n,k++] ;Print[n," ",f[n]]
and we then obtain that with n = 1999999, we have f(n) = 2177181.
Again using a computer, we obtain that each number n < 1999999 is such
that the corresponding sequence fi(n), f2(n), f3(n), ... eventually enters
one of the six loops mentioned in the statement.
In fact, much more is true, namely: Given any integer k > 2, there exists a
polynomial p(z) of degree k with integer coefficients and a positive integer
m such that n = p(m). Indeed, first let m = [n'/¥]. By writing n in basis
m, we obtain

k k-1
n=cgm -+ Cx_1m + -+ cym + cg,

where ¢ = 1, ¢k-1, Ck—2, ---, €1, Co are the digits of n in basis m, with
of course 0 < ¢; <m fori=0,1,...,k. By choosing

p(z) =2 +cp12¥ P+ F x4 oo,

we have thus found the required polynomial p(z} for which p(m) = n.
REMARK: This observation is at the very basis of the Number Field Sieve
Factorization Method (see Pomerance [27]).

Assume the contrary, that is that & is not prime. Then, £ = ab with
2 <a<b<k,in which case

10 -1 10°° -1 10 —1 10° —1
9 9  10°-1 9
that is the product of two integers larger than 1.

REMARK: Only seven numbers k for which the corresponding number
11...1 is prime are known: these are 2, 19, 23, 317, 1031, 49081 and

111...1=

k
86453 (see Weisstein [40]).
Let n = g1¢2q3. First of all, it is clear that

(3) g1 <g2<g3< nl/?’,
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in which case

2/3

n n n

P> >g=— > e =
q3q1 n-°q1 q1

which implies that
n2/3 1/3
qa > i3 /3,
which contradicts (3).
If the condition is instead given by (2), then if 3|n, there exist prime
numbers p and g both different from 3 such that

0=n=9+p"+¢*=1+1=2 (mod 3),

which contradicts the fact that n =0 {mod 3); while if 3 does not divide
n, there exist prime numbers p, ¢ and r all different from 3 such that

0Zn=p>+¢*+r*=14+1+1=0 (mod 3),
again a contradiction.
REMARK: There exist at least eight numbers n (with n # p3) such that
n=3 p3, namely n = 378, 2548, 2836295, 4473 671 462, 23 040925 705,
13579716 377989, 21 467 102 506 955 and 119 429 556 097 859.
(Contribution of Jean-Lou De Carufel) We will show that n = 3 is the
only number with this property, so let n be such a number. There exists
a positive integer r such that 107! < n < 10". We must have
> 1\" 1
2m (10r> S

=1

. - . : 107 2
a relation which is successively equivalent to 1"/—- =i A -1-5

—1/10" ny 107
and n? = 10" — 1.

Taking r > 2, we find, since n? = 0,1 (mod 4), 0 = 0 — 1 (mod 4)
or1=0-1 (mod 4), so that 0 =3 (mod 4) or 1 =3 (mod 4), which is
impossible. Hence, we must have » = 1, in which case n? = 10 — 1 =9,
and n = 3, as required.

These numbers are

42 = 2.3.7=2543+7,
140 = 22.5.7=2"+5+7,
200 = 2-5-29=284+5+29,
618 = 2-3-103=2°+3+ 103,
2058 = 2.3-73=21 4347,
6747 = 3-13-173=3%+13+ 173,
131430 = 2-3-5-13-337=2'"+3+5+ 13+ 337,
531531 = 32.7-11-13-59 =324+ 7+ 11+ 13+ 59.

To find these numbers, we first observe that the number r of prime factors
of n satisfying (*) must be odd. Indeed, assume that r is even. If ¢; = 2,
then n is even and g2 + - - - + ¢, is odd, but n =2% +qo + - - - + g, is odd, a
contradiction. On the other hand, if g; > 3, then n is odd and go+- - - +¢,
is odd, in which case n = qf + g2 + - - - + ¢ is even, a contradiction. We
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must therefore have 7 > 1, 7 odd. On the other hand, since for any integer
n satisfying the given property, we must have

gt =n—(g2+ - +a),
it is enough to verify that
a=log, (n—(g2+ - +¢;)) is an integer .

The following MATHEMATICA program (which generates the numbers n
in question, the corresponding exponent a and the factorization of n) is
therefore quite efficient (below, factors[n] stands for the prime factors
of n):
Do[w=factors[n];
If[0ddQ[r=Length[w]]&&(r>1)&&
IntegerQ[a=Log[w[[1]],n-Apply[Plus,Take[w,-r+1]1]11],
Print["n=",n," a=",a," ",FactorInteger([n]]],
{n,2,1000000}]
REMARK: The other numbers n < 4 - 108 with this property are

5124615 = 3-5-341641 = 3 + 5 + 341641,
14356161 = 32 - 227 - 7027 = 3% + 227 + 7027,
34797196 = 22 . 71242757 = 2%° + 7 + 1242757,
40265322 = 2 - 3- 6710887 = 225 + 3 + 6710887,
67239938 = 2 - 257 - 130817 = 226 + 257 + 130817.

S 3 3 3 3
I

(264) (MMAG, Vol. 63, no. 2, p. 129). First of all, it is clear that if n is a
product of Mersenne primes, then n = Hpj (2P — 1), where the product
runs over certain prime numbers p;, in which case we have

o(n) = [[27 =27,
Pj

which proves that the condition is sufficient. Assume now that there exist
prime numbers ¢; < ... < g, and positive integers a4, ..., a;, a such that

n=qr'gs?---q2" with o(n) = 2%.

It then follows that for each integer i, 1 < i < r, there exists a positive
integer (; such that

() o(g) =1+qi+qf +-- +gf =27

Let ¢ be fixed, 1 < ¢ < r. Relation (*) implies in particular that ¢; and o
are odd. We therefore have that a; = 2k; + 1 for a certain integer k;, so
that

o(@)=1+q)(1+¢ +q¢ +-+¢*)=2%

But then there must exist a positive integer §; such that 1 + ¢; = 2%,
which means that ¢; = 2% — 1 is a Mersenne prime. Since this is true for
each integer i, 1 < ¢ < 7, the result follows.
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(265) (MMAG, Vol. 64, no. 5, p. 851). We will show that these are the positive
integers N which are not a power of 2. Indeed let N be an integer of the
form

N=<§)+kn:w+nk (k>1,n>1).
Since 2N = k(k + 2n — 1), it follows that 2N must have an odd factor
larger than 2, and therefore similarly for N. It follows that NV cannot be
a power of 2.

Conversely, let N be a positive integer which has an odd factor larger
than 2. Consider the factorization of 2V as a product of two positive
integers of which one is odd. Let A be the smallest of these two factors
and B the largest. Setting k = A and n = B%_A, it follows that

k A(A-1) B+1-A AB
= :—:N
(2>+kn 7 +A 5 5 )

which gives the result.
REMARK: Since

k
<2>—i—kn:1+2+---+(k—1)+kn:n+(n+1)+-~+(n+k—1),

the problem is equivalent to the one that consists of searching for the
positive integers which can be written as the sum of consecutive integers.
(266) They are the integers n of the form n = 4m + 2, m = 0,1,2.. ., since
34m+2 =9 = 1 (mod 10), while 3*™ = 1 (mod 10), 3*™*! =3 (mod 10)
and 3*™*+3 =7 (mod 10).
(267) It is the number 5. Indeed, since n! = 0 (mod 7) as soon as n > 7, we
have

U421+ 4500 =114+ 2! + 31 + 41 4+ 5! + 6!
=14246+34+14+6=5 (mod7).

(268) Since for ¢ > 4, 12|i!, the remainder is 1 +2 +6 = 9.

(269) For n odd, 10-32™" +1 = 0 (mod 3), while for each even integer n, 10 -
32" +1=0 (mod 11).

(270) The answer is YES. Since n® = 1 (mod 9) for each integer n such that
(n,3) =1 and since n? = 4 (mod 9) for n = 2 (mod 9), it follows that if
n =2 (mod 9), we have n6+n?+4 = 0 (mod 9). On the other hand, since
n®4+n2+4 =0 (mod 4) for all even n, we may conclude that 36|n® +n?+4
forn=18k+2,k=0,1,2,....

(271) If the equation 3k — 1 = z? + 3y? had a solution, then we would have
z? = —1 =2 (mod 3), which is impossible because z2 = 0,1 (mod 3).

(272) We know that

[log n/ log p] n
m = — .
> [
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Amongst the integers 1,2, ..., n, those which are divisible by p are: p,2p, ...,
k1p, where k1 = [n/p]. Since

nl=1-2--(p—1)(p)p+1)(p+2)---(2p - 1)(2p)
(2p+1)(2p+2)---3p—1)(Bp)((k1 — D)p + 1)((k1 — 1)p + 2)-
oo (kip = 1) (kip)(kip + 1) (kip +2) - -

and since from Wilson’s Theorem, the product of the integers in each set

{1725"'ap71}5 {p+11p+2a52p~1}aa{(klﬁl)p_kla(klhl)p_*'
2,...,k1p — 1} is congruent modulo p to —1, it follows that

n! k n
= (= | — | = !
Pl (—1)" k! (n {p} p>. (mod p).
Now, amongst the integers 1,2, ..., kq, those which are divisible by p are:
D,2p, ..., kap, where ka = [k1/p] = [n/p?]. It follows that

o o [ (- [5] om

where 1 < ky < k1. Continuing this process, the result follows.

(273) We must show that n'* —n = 0 (mod 10) or equivalently that n'3 —n =0
(mod 2) and n'3 —n =0 (mod 5). Using Fermat’s Little Theorem, n? =
n (mod 2) which implies n'® = n (mod 2). Similarly, n® = n (mod 5)
implies n'® = n (mod 5).

(274) Since n must be divisible by 7 and by 11, it can be written as n = 7%-11°.
But n/7 = 771 - 11°* must be the 7-th power of an integer, in which case
a =1 (mod 7) and b = 0 (mod 7). Moreover, n/11 = 7% - 11°~! must
be the 11-th power of an integer, so that ¢ = 0 (mod 11) and b = 1
(mod 11). Solving this system of congruences gives a = 22 (mod 77) and
b =56 (mod 77). Hence, the smallest positive integer satisfying the given
constraints is n = 722 . 1159,

(275) Consider the system of congruences z+j—1 = 0 (mod p?), i=1,2,...,k,
where p; stands for the j-th prime number. From the Chinese Remainder
Theorem, this system has one solution; that is there exists an integer
n which verifies these k congruences. Therefore, each of the k integers
n,n+1,...,n+k — 1 is divisible by a perfect square, as required.

(276) Since z = a (mod m), there exists k € Z such that £ = a + km and
therefore a + km = b (mod n). Hence, there exists j € Z such that
a+km = b+jn, that is km —jn = —(a—b). Since (m,n)|m and (m,n)|n,
it follows that (m,n)|(a —b).

Reciprocally, assume that (m,n)|(a — b). Then, there exists M € Z
such that a — b = M(m,n) and since (m,n) = kym + kan, ki, k2 € Z,
it follows that there exist integers j and k such that a — b = —km + jn,
k= —kiM, j = koM. Therefore, we have a + km = b+ jn. Setting
z = a+km, we obtain z = a (mod m) and moreover x = a+km = b+ jn,
that is z = b (mod n).
(277) Letting N = (), then

EIN=p(p—-1)---(p—k+1)=0 (mod p),

and since (k!,p) =1 then N =0 (mod p).
(278) (a) This follows from Problem 277 and induction on n.
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(b) Since a? = b (mod p), then by Fermat’s Little Theorem, we have
a =b (mod p) and therefore there exists an integer k such that a =
b+ kp. Hence, by the Binomial Theorem, there exists an integer K

such that
a? = (b+ kp)?
=W+ (’1’) ¥ kp + (Z) P72kPp? + -+ KPpP = WP + Kp?,
where we used the result of Problem 277, thus completing the proof
of part (b).
Let N = (P.}) = (p=1)p=2)---(p— k). We then have

k!
k!N = (—=1)k! (mod p)

and since (k!,p) = 1, we conclude that N = (—1)* (mod p).
From Wilson’s Theorem,

P-D=@-DE-2)p-rE-r-1!
=(-1)rlp—r—1)=-1 (mod p).

Since (—1)"r! =1 (mod p), we obtain the result.

For the second part, it is enough to notice that (—1)%9! = 1 (mod 269)
and that (—1)!515! =1 (mod 479).

Assume that a solution exists. First, if 8 is odd,

P _1=(-1)P-1=-2=1#0 (mod 3),
which contradicts the given equation. Similarly, if 3 is even,

2 - 1= (22 1) (22 +1),

which means that 3|(2%/2 — 1) > 3 or 3|(20/2 +1) > 3, and this is why we
must have that p|(2%/2 — 1) and p|(2°/2 4 1), implying that p|2, which is
not possible.

(P.Giblin [14]) Assume that ¢ is a prime factor of n. Since n is odd, it
follows that ¢ is odd. We will first prove that p|(g — 1). Observe that
47 = 2"~ =1 (mod n), so that 4° = 1 (mod q). It follows that r, the
order of 4 modulo g, is a factor of p; we therefore have that r = 1 or r = p.
If r =1, then4=1 (mod ¢), which implies that ¢ = 3, in which case 3|n,
which contradicts the fact that n is not a multiple of 3. Hence, r = p,
which implies that p|qg — 1, as required. We shall finally show that n = q.
Since ¢ —1 > p, we have ¢ > p—1 > n/2 > /n, because n > 4. We
have thus shown that each prime factor g of n is larger than \/n, which is
impossible unless n itself is a prime number.

(Francesco Sica) Assume that p*|ja—b. Then there exists a positive integer
¢ which is not divisible by p and such that

b=a+ cp*.
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We then have

_ ko _ a (P) i p—iy k(p—i)
peraty = 3 (0o
= o +pap—lcpk + P(P2— 1)ap~2c2p2k (mod pk+2)
= aP +aP lep**!  (mod pFt?).
We have thus established that
€ a? — W = aP lephtl  (mod pFt?),

hence, in particular (x). Moreover, it follows from (**) that p**2 divides
aP—bP+aP~LcpFtl but, since p faPLc, it follows that p*+2 divides exactly
aP — bP, as required.

The answer is NO. If p = 2, then p|1, a contradiction. Hence, p > 3.
If § is even, then p® +1 =1+ 1 = 2 (mod 4) while 2 = 0 (mod 4), a
contradiction, while if § is odd, then

2 =p +1=(p+ )P -p 2+ —p+1)=(p+1)Q,

where @ > 1 is odd, which is nonsense.
If a solution {m,n} exists, then it is clear that n > 1 and that m > n > 1,
in which case

l4n=m?-n =(m-n)(m+n)>m+n>1+n,

which is nonsense.

Second solution. Assume that 1 +n+n? =m? withn > 1, m > 1.
We then have 4 + 4n + 4n? = 4m? and therefore (2n + 1)? + 3 = (2m)2.
But, the only squares which differ by 3 are 1 and 4. This implies that
n = 0, which contradicts the fact that n > 1.
Let (1) be the equation for which we seek the solutions and let {p, ¢} be
a solution. First of all, it is clear that

(2) p?+1<q<p®+p.

Indeed, these inequalities are consequences of the following two inequali-
ties:

@P*+1)? = p' 2’ +1<p +pP +pPHp+1=¢°

P +p)?® = p'+20°+p° >+ +PP+p+1=¢%
But it follows from (1) that p(1+p+p? +p3) =¢> -1 =(¢g—1)(g+ 1)

and this shows that p|(¢ — 1)(¢ +1). It follows that p|(q — 1) or p|(g + 1).
If p[(g — 1), then it follows from (2) that

p?<q—-1<p?®+p—1, and therefore p? +1 < q—-1<p*+p—2.

Observing that the interval [p? + 1,p% + p — 2| contains no multiple of p,
it is therefore impossible that p|(g — 1).
If p|(g + 1), then, from (2), we have

pP’+2<q+1<p?+p+1, and therefore p? +3<q+1<p*+p.
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The fact that the only multiple of p in the interval [p? + 3, p? +p| is p*> +p
implies that g + 1 = p? + p; that is ¢ = p? +p — 1. Substituting this value
of ¢ in (1), we obtain

l+p+p°+p°+p* = (P*+p—1)%
p’—2p*=3p = 0,
p*-2p—3 = 0,
(p—3)p+1) = 0,

an equation that implies that p = 3, which gives g = 11.
It is easy to establish that for each integer m # 0 (mod 7), we have
m3=+1or —1 (mod 7). On the other hand, by hypothesis we have

(%) el tai+ad+ai=0 (mod 7).

Therefore, none of the z;’s is divisible by 7, and the congruence () is
impossible. Thus the result.

(AMM, Vol. 81, 1974, p. 172). If p = 2, then 22 + 32 = 13 is not a power
of an integer larger than 1. Assume that p is odd; then using Problem 8,

p—1
2P 4 3P — (2 + 3) Z(_l)ka—l~k 3]6,
k=0
and since 3 = —2 (mod 5), we have that
p—1 p—1
Z(—l)k2p_1_k3k = ZQP_I =2P"1p  (mod 5).
k=0 k=0

If p # 5, then 2°~!p # 0 (mod p) and therefore 2P + 37 = 5k, for k #Z 0
(mod 5). Hence, 2P + 3P is never the power of an integer. On the other
hand, for p = 5, 2% + 3% = 275 is obviously not a power of an integer.
Hence, the result.

Letting n =6k +7, k€ N, 0 <r <5, then

" +2" 4+ 3" 44" 45" +6"=1"+2"4+3" 44" +5 +6" (mod 7).

Hence, if r = 0, we have 1" +2" 43" +4"+5%4+6" = 6 (mod 7), while for
r=1,2,3,4,5 we have 1" + 2" + 3" + 4" + 5" + 6" = 0 (mod 7). Hence,
the result.

The answer is YES. Indeed, by hypothesis (n, 100) = 1; we may therefore
use Euler’s Theorem and obtain that n?(!°9) = 1 (mod 100). Hence,
n%® =1 (mod 100), which means that the last two digits of n4%0 = (n40)10
are indeed 0 and 1.

We need to examine to what values the quantities 4°, 41, 42, ... are con-
gruent modulo 10. But we easily verify that each of these numbers is
congruent to 1, 4 or 6.

We must first show that (n+1)3—n3 £ 0 (mod 3) for each integer n > 1.
But this quantity is equal to 3n? +3n+ 1, which is congruent to 1 modulo
3, thus the result. Similarly, we prove that (n + 1)3 —n® # 0 (mod 5),
for each integer n > 1. Indeed, it is enough to consider n = 5m + r,
r=0,1,2,3,4.
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(293) This is true since
2(32)" 4+ 5%5" =2.5"—2.5"=0 (mod 27).

ince = - = - mo , the result is immediate.
294) Si 982 169 132 d 337), th It is i di
ince =9 (mo , then ¥ = 199+10k for 4 certain integer k.
295) S 1919 =9 d 10), then 191° g
We thus obtain

1991% =79 (mod 100),

which implies that the last two digits are 7 and 9.

(296) We have 280 = 23 . 5.7 and since both a and b are odd, then a? = 1
(mod 8) and b®> = 1 (mod 8). Therefore, a'?> = 1 = b'? (mod 8). Using
Fermat’s Little Theorem, a* = b* = 1 (mod 5) and therefore a'? = b'2
(mod 5). Similarly, Fermat’s Little Theorem allows one to obtain a!'? =
b2 (mod 7). The result then follows by combining these congruences.

(297) We only need to observe that 2730 = 2-3-5-7-13 and use Fermat’s Little
Theorem five times.

(298) The required integer is 21424. Indeed, we must solve the congruences
n =4 (mod 12), n = 4 (mod 17), n = 4 (mod 45), n = 4 (mod 70).
The first two are equivalent to n = 4 (mod 204), while the last two give
n =4 (mod 1530). Finally, the solution of these last two congruences is
given by n =4 (mod 21420), which gives the result.

(299) The answer is YES. From Fermat’s Little Theorem, n'®* = n” = n (mod 7),
n'' =n% (mod 7) and n” =n (mod 7), so that the polynomial is con-
gruent to 3n +4n® +n +3n® +3n = 7Tn + 7n® = 0 (mod 7). Thus the
result.

(300) Since

<2p> _2@2p-1D(2p-2)---(2p—(p—-1))
p p!
and since

(2p-1)(2p—-2)---2p—(p—-1)=(-1)! (modp),

it is clear that

2p\ _ (p—1)! _
<p>=2(p—1)!:2 (mod 7).

(301) It is clear that 7|n = “abc” if and only if
n=100a+10b+c=2a+3b+c=0 (mod 7),

and the result follows.

(302) Tt is clear that “abcabc” =“abc”-1001. But 13|1001, thus obtaining the
result.

(303) Since 256! = (—1)%¢! = —1 = 2 (mod 3) and since from Fermat’s Little
Theorem, 2°6! = (210)%6 .2 = 2 (mod 11) and 2°6! = (216)3.5.2 =2
(mod 17), we conclude that 251 =2 (mod 561). The second part can be
obtained in a similar manner.

(304) Since
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and since we have n!3> =n (mod 5) and n!3 =n (mod 7), then
12 13+23 _n? +n13+§ B n13—n+n13—n+n
35" 35 5 7 '3 5 7 ’

a number which is an integer for each n € N.

The answer is YES. The case n = 1 implies that we can choose r =
431/481. We will show that for this rational number r, the number in the
statement is an integer for each n € N, (n,481) = 1. But this number is
an integer when (n,481) = 1 if and only if

50 36 431\ _ 50 5 431
"\w1" Tas1) T w81 481

is an integer. Since 481 = 13- 37 and since for each n € N,

n¥"=n (mod37) and n'*=n (mod 13),

we conclude that the number 227136 4+ r is an integer for all n € N when

r = 431/481. o

If p = 3, then considering the numbers 111, 111111, 111111 111,..., that
is all the numbers containing 3, 6, 9, ... times the digit “1”, we obtain
infinitely many numbers of the required form. Let p > 7, p prime. An
integer N made up entirely of “1” can be written as N = (10™ — 1)/9.
But from Fermat’s Little Theorem, 10°P~! =1 (mod p), which means that
10me-1) = 1 (mod p) for m = 1,2,3,.... Since p # 3, this means that
p|(10mP=1) —1)/9, for m = 0,1,2,3,..., and the result follows.

Indeed, we easily check that 234° = 1 (mod 341), while n = 341 = 11 - 31
is not prime.

(AMM, Vol. 67, 1960, p. 923). From Fermat’s Little Theorem, it fol-
lows that b3 = b (mod 3) and b = b (mod 2) and therefore that b3 = b
(mod 6). Since b3 — b = b(b? — 1), we have

Pl 1= 1D 3 4+P 5+ b+ 1)

and therefore b3 — b is a factor of b? — b, in which case 8 —b =0 (mod 6).
Fermat’s Little Theorem allows one to write % — b = 0 (mod p), and
since (6,p) = 1, we have ¥ — b = 0 (mod 6p). Similarly, we obtain
aP —a =0 (mod 6p). Combining the congruences ab? — ab =0 (mod 6p)
and —ba? + ab =0 (mod 6p) then yields the result.

The answer is NOT ALWAYS. Assume that n is an odd integer. Since
1424+---4(n—1) = n(n —1)/2 and since n is odd, it follows that
(n —1)/2 is an integer and consequently the congruence is true.

Assume that n is an even integer. Letting n = 2m, then

1+24+---+(n—-1)=m2m—1)#0 (mod 2m).

Using the formula Zle i? = w (see Problem 1), with k = n—1,
we obtain that n must satisfy n = £1 (mod 6).

The answer is YES. Since 134+ 23+ .-+ (n —1)3 = n-n(n — 1)2/4 (see
Problem 1), it follows that the congruence is true if n3 — 2n? +n =0
(mod 4). Setting n =4m +r, 0 < r < 3, we obtain that the congruence
is true except in the case n = 4m + 2.
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(312) Since
5" = (44 1)

n n n n
— 4" 471—1 3 42
(e (e () e ()

it follows that
5" =4n+1 (mod 16)
and that
5"=14+4n+8n(n—1) (mod 64).
(313) If we can show that, for each integer k > 1, we have

52" =1+ 2¥*2  (mod 2++3),

then the result will follow. But this last congruence can easily be obtained
by induction on k. For k = 1, the result is immediate. Assuming that
the congruence is true for k, that is that 52° = 1 4 2k+2 4 M2k+3 for a
certain positive integer M, then squaring each side of this last equation,
we obtain

2k+1

5277 =142 (mod 2FF%).

The general case can be handled essentially in the same manner.
(314) This follows from the fact that the given expression is equal to
n—n nd-n
5 + 3 + n,
which using Fermat’s Little Theorem is easily seen to be an integer.
(315) It is clear that z = 0 (mod 13) is not a solution. So let 1 < z < 12. Then,
from Fermat’s Little Theorem, we have that x'2 = 1 (mod 13) and this
is why 224 = 1 (mod 13). The congruence to be solved can therefore be
reduced to 7z =1 (mod 13), which leads to the solution z = 2 (mod 13).

(316) The seven pairs are {2,9}, {3,6}, {4,13}, {5,7}, {10,12}, {11,14} and

{8,15}.
(317) Since (m;,m;) = 1 for i # j, it follows from Euler’s Theorem that
mf(mj ) =1 (mod m;). Since the function ¢ is a multiplicative func-

tion, we have mf(m)/¢(mi) = 1 (mod m;) for ¢ # j. On the other hand,

mf(m)/qs(mj) =0 (mod m;), so that for j =1,2,...,r, we obtain

mf(m)/rﬁ(ml) + mg(m)ﬂf’(m?) 4o mfM/m) = 1 (mod m;)

Since the integers m; are relatively prime, the result follows.
(318) From Wilson’s Theorem,

P-D!=@-1)-(—(k-1)(p—Fk)
=(-DFY k-1 (p—k)!=-1 (mod p),
and multiplying by (—1)¥~1, the result follows.

(319) The answer is YES to both questions. We first use Fermat’s Little Theo-
rem for p and then for ¢, in which case we obtain

p7 14+ '=1 (modp), p'4+¢'=1 (mody),

since (p, q) = 1, and the result follows.
To prove the second part, we call upon Euler’s Theorem.
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(320) We have

32 =9(9") =98+ 1)" =9(8" +n8" ' +--- +8n+1)

n(n —1)

=9<8"+n8"‘1+~--+82n 5 )+9(8n+1),

and this is why
32 =74+ 9=8n+9 (mod 64).

(321) We will prove that the required GCD is equal to p. First of all, from
Wilson’s Theorem, it follows that for p prime, (p — 1)! = —1 (mod p),
a congruence which can be written as (p — 2)!(p — 1) = —1 (mod p),
implying that (p—2)! =1 (mod p) and therefore that p| ((p — 2)! — 1). It
remains to show that if 2 < k < p—1, then k does not divide (p —2)! —1.
But if 2 < k < p—2 and k|(p—2)! — 1, we obtain that k|1, a contradiction.
It remains to consider the case when (p — 1)|((p —2)! — 1). Since p is a
prime number, p — 1 is an even number, and therefore, using Problem
180, (p — 1)|(p — 2)! except for p — 1 = 4, that is when p = 5. Hence,
(p—=1)f((p—2)!—1) for p > 5.

(322) This follows from the fact that dividing by 7 the number 55614 leaves 4 as
a remainder, while dividing by 7 the number 12857 leaves 3 as a remainder.
Indeed,

56614 = (_0)6614 _ 96614 _ 93-2204+2 _ g2204 . 4 = 4 (mod 7),

12857 = 5857 — 5614245 — 1142 . 55 — (_9)5 = _32=3 (mod 7).
(323) (a) Since 10 =1 (mod 3), we have

3IN << a,10"+---4+a;10+ay=0 (mod 3)
< ap+--+a+a =0 (mod3).

(b) We have

4N <= a,10"+---+a110+ap =0 (mod 4)
<= 10a; +ap =0 (mod 4),
since 10 =0 (mod 4) for each j > 2.

(c) We have

6|N < a,10"+ ---+a110+ap=0 (mod 6)

<~ 4(ap+---+az+a1)+a =0 (mod6),

<~ 4d(an+---+az+a1+ap) =3ap (mod 6),
since 10 —4 = 0 (mod 6) for each j > 1; indeed, 107 —4 = 999. .. 96,
a number which is even and divisible by 3.

(d) If N has three digits (that is n = 2), then the result is obvious. We
examine the case n = 3, so that N = 1000a3 + 100ay + 10a; + ag.
We must prove that

1000a3 + 100az + 10a1 +ap =0 (mod 7)
<= 100az + 10a; +agp —a3 =0 (mod 7).
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This boils down to proving that

1001as + 100ag + 10a1 +ap —az =0 (mod 7)
<= 100a3 + 10a; + ag —az =0 (mod 7),
an equivalence which is easily verified since 7|1001.
To prove the case n = 4, we proceed essentially in the same manner,
this time using the identity
10%*as 4 10%°a3 + 10%as + 10a; + ao
= 10010a4 + 1001az + 100as + 10a; + ag — (10a4 + a3)
and by observing that 7|10010. The same argument works also for
the case n = 5.
If n > 6, we use the same argument by also observing that 106 — 1 =
(103 —1)(10% + 1), where 7|103 + 1; that 107 — 10 = 10(10° — 1); that
108 — 100 = 10%(108 — 1); and so on.
(e) We have
8IN < a,10"+---+a110+ap =0 (mod 8)
<= 100ay + 10a; + ap =0 (mod 8),
since 10/ =0 (mod 8) for each integer j > 3.
(f) Since 10 =1 (mod 9), it follows that
IN <= 10"+ - +a110+ap =0 (mod 9)
<~ ap+---+a;+a =0 (mod9).

(g) We have

1IIN <= 0, 10"+ +a1104+a; =0 (mod 11)
— a,(11-1D"+a,_(11-1)"" 1 4...
+a1(11—=1)4+ap=0 (mod 11)
= (-D)"ap+(-D"tap_1+--
+as —a; +ap =0 (mod 11)
= (D"{(-D"an+ ()" ap_1+---
+as —a; +apg} =0 (mod 11)
= an—ap1+ -+ ()" a4+ (=1)"ag
=0 (mod 11),
and the result follows.

(324) Observe that 168 = 8 -3 - 7. Since 8|“770ab45¢”, it follows that using
Problem 215 we have 8|“45¢” and then ¢ = 6. Similarly, 3|“770ab456”
implies ¢ + b =1 (mod 3), and 7|“770ab456” implies (using Problem 323
(e)) that 456 — (10a + b) + 77 = 0 (mod 7), that is 3a + b =1 (mod 7).
Therefore, a + b = 1 and 3a + b = 1, which allows us to conclude that
a =0 and b = 1. The three required numbers are therefore a =0, b =1

and ¢ = 6.
(325) Since (a,m) = 1, using Euler’s Theorem, we have

a®™ —1=0 (mod m).
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But
a®™ —1=(a—1)(a®™ o924 . La41)
and since (@ — 1,m) = 1, the result follows.

(326) If pla, then aP~V'+1 = g. o~ 1D' = 0= ¢ (mod p). If pfa, then (a,p) =
1, and it follows from Fermat’s Little Theorem that a?~! = 1 (mod p)
and therefore that a(P~V' = (ap_l)(p_m = 1 (mod p), in which case
aP~D'+1 = ¢ (mod p), as required.

(327) Using Fermat’s Little Theorem,

Pyt (p-1Pl=14-+1l=p-1=-1 d p).
+ (r—1) +o+1l=p (mod p)
p—1

(328) Using Fermat’s Little Theorem, we have a? = a (mod p) for each positive
integer a. Hence,

P4+ 4. .+ (p-1P =142+ +p=pp+1)/2=0 (mod p),
since p + 1 is an even number.

(329) This is a consequence of the congruence (k—1)!(p — k)! = (=1)F (mod p)
(see Problem 318) and Fermat’s Little Theorem, because

p—1

> (k= 1)!(p — k)lkP?

k=1
=—-1Ptpopl gl _(p—2)P L4 (p—1)Pt
=-141-14---—1+1=0 (mod p).
(330) From Wilson’s Theorem, we have (4n)! = —1 (mod p), in which case
(4n)(4n —1)---[4n — (2n — 1)](2n)! = -1 (mod p).

Since 4n = p— 1 = —1 (mod p), we have 4n — 1 = —2 (mod p) and

therefore 4n — 2 = p — 3 = —2 (mod p), so that 4n — (2n — 1) = —2n

(mod p), and the result follows.

For the generalization, we have from Wilson’s Theorem (m+n)! = —1
(mod p), and therefore

(%) (m+n)(m+n-1)---Im+n—(n—1)m'=-1 (mod p).
We have m+n=p—1= -1 (mod p) and m+n—1= —2 (mod p), and

so on, until we obtain m+n—(n—1) = —n (mod p). Then, substituting
in (x), we find
(*x) (=1)"m!n! = -1 (mod p).

Since m +n is even, the second relation of the problem is proved. Finally,
the last congruence can be obtained by setting m =n = 7’;—1 in (k).

(331) From Wilson’s Theorem, n is prime if and only if (n —1)! = —1 (mod n).
Therefore,

“l=(n-D=mn-1)(n-2)(n-3)!=2(n-3)! (mod n),

and the result follows.

(332) This follows immediately from Fermat’s Little Theorem and Wilson’s The-
orem. Indeed, a? = a (mod p) and a(p — 1)! = —a (mod p), allowing us
to conclude that a? + a(p — 1)! =0 (mod p).
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(n—1!+1

From Wilson’s Theorem, is an integer if and ouly if n is a

n
prime number, in which case the sum appearing in the statement is equal

to
S =31 = (@),

p<z p<lz
as required.
If d = (r,s), then r = dry and s = ds;. It is clear that
(@)/4=1 (modmi) and (a?)*’¢=1 (mod my).
Therefore,

o) = (¢TI D/8) = 16/D =1 (mod my),

almsl = (g)(/D/d) = 17/d) = 1 (mod my),
and the result follows.
Let m = ¢¢e?---q¥. If (a,¢;) = 1, 1 < i < r, then at@’) =
1 (mod ¢f*). Now, since ¢*|m implies ¢(¢{*)|¢(m), then a?(™ =
(mod ¢). If @ > 0 and ¢ > 2 are positive integers, then on the one
hand, we have ¢! > a (we can prove this by induction on a) and on the

other hand, for i = 1,2,...,r, we have ¢® !|m and ¢~ *|¢(m). There-
fore,
(*) g Hm — ¢(m).

Since m — ¢(m) > 0, then for m > 1, it follows from (x) that
m—¢(m) > ¢t > .
Therefore, in the case (a,q;) > 1, that is ¢;|a, we have

q;n—cb(m) lam—(b(m)'

g
It follows that for each positive integer a, the relation

a™ M) (g¢(m) _ 1)

(o7}
q;

is true for s = 1,2,...,r and therefore that m|a™¢(™),
Let a1,a2, ..., a, be acomplete residue system modulo m. Since (m+1)/2
is a positive integer, say (m + 1)/2 = k, it follows that

i LA m(m+ 1)
a; = i=——==mk=0 (modm),
2T od )

as was to be shown.

Let E = {z1,x2,...,Z,} be a complete residue system. The set E’ con-

tains the same number of elements as E' and for z;,z; € E, ¢ # j, we have
ax; +b=azx; +b (mod m),

then az; = az; (mod m) and therefore z; = z; (mod m), which contra-
dicts our hypothesis.

The answer is YES. Indeed, the set {6,12,18,24,30,36} is a reduced
residue system modulo 7.
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(339) We must show that

Z k=0 (modm).
k<m
(k,m)=1
Let a1, as,...,a4(m) be integers smaller than m and relatively prime to

m. Since (k,m) =1 <= (m — k,m) =1, we have

a1+a2+...+a¢(m) = (m—al)~|—(m—a2)+---+(m_a¢(m))
= me(m)— (a1 +az + -+ ay(m))-

Since ¢(m) is an even integer when m > 2, we then have

Z k:@mzo (mod m).

(340) The result follows immediately from Wilson’s Theorem since r17g - - - rp_1 =
(p—1)! (mod p).
(341) The set {1,3,7,9} is a reduced residue system modulo 10. However,

E' ={3z+2|zeE}={511,23,29}

is not a reduced residue system modulo 10, since (5,10) # 1.

(342) (MMAG, Vol. 64, 1991, p. 63). The only solution is (z,y,2) = (2,3,5).
First of all, we observe that (z,y) = (z,2) = (y,2) = 1. Then, 2 <z <
y < z, and combining the three given congruences we obtain

zy+2z2+yz—1=0 (mod z,y and z).
Since z, y and z are pairwise coprime, we have
zy+zz+yz—1=0 (mod zyz).

It follows that xy +zz +yz — 1 = k(zyz) for some integer k > 1. Dividing
by zyz, we obtain that
1 1 1

1
-+ -—4+-=—+k>1
z Yy T zTY=Z

Since x < y < z, it follows that

1 1 1 3
(%) I<—+-+-<=
Ty z

and this is why x = 2. In this case, the inequalities give

1 1 1 2

2 'y z vy

which implies that y = 3. It follows that the only possible values of z are
4 and 5. Hence, for 2 < z < y < z, the solutions are (z,y,2) = (2, 3,4)
and (2,3,5). Since 2 and 4 are not relatively prime, the only solution is
(1" Y, Z) = (27 3,5).
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Let p, stand for the r—th prime number. For each integer ¢, 1 < i < n, let

M; = P(i—1)k+1"P(i—1)k+2 P(i—1)k+3 ' * * Pik—1"Pik, and consider the system
of congruences

z=-1 (mod my),

z=-2 (mod msy),

z=-n (mod my,).
Since the m;’s are pairwise coprime, the Chinese Remainder Theorem
guarantees a solution zg. Then, mq|(zo + 1),...,my|(zo + n). Therefore,
o+ 1,z0+2,...,29+n is a sequence of n consecutive integers which are

divisible by at least k& prime numbers.
For the second part (n =4 and k = 1), we must solve

z=-1 (mod 3),
z=-2 (mod 5),
z=-3 (mod7),
z=-4 (mod 11).

In this case, x = 788 (mod 1155) and therefore zo = 788. The four
numbers are therefore 789, 790, 791 and 792.

We must solve the system
z=1 (mod 3),
x=2 (mod 4),
z=3 (mod 5).

Using the Chinese Remainder Theorem, we find that z = 58 (mod 60).
The required positive integers are therefore the numbers 605 + 58, with
j=0,1,2,....

We must solve the system

@ =0 (mod?2)
a+1=0 ( )
a+2=0 (mod4),
a+3=0 ( )
a+4=0 ( )
This system is equivalent to:

a=2 (
a=2 (mod 3),
a=2 (
a=2 (
a=2 (mod6

Since [2,3,4,5,6] = 60, we have a =
integer a is 62.
We obtain

(mod 60). Hence, the smallest

—

_ 1 _
= =0.3, 32 = 0.1 of period 1,

1/3% = 0.037 of period 3, 1/3* = 0.012345679 of period 9. However,

w

1 -
- = 0.142857 is of period 6,
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and

1
== 0.020408163265306122448979591836734693877551

is of period 42 (= 6-7). On the other hand, the period of 1/73is 6-7- 7.
It seems reasonable to make the following conjectures:
e Let p be a prime number such that (p,30) = 1; if 1/p is of period m,
then 1/p™ is of period mp" 1.
e For n > 2, 1/3" is of period 3"2.
(TYCM, Vol. 28, no. 4, 1997, p. 320). Assume that the decimal expansion
of a/b is formed by the repetition of the block B = ab of length n > 1.

Then,
a B ab

5 =0.BBB...= =1 = 1on =1
so that > = 10™ — 1. Hence, for n > 1, b must be an odd integer. If
n > 1, then b2 = 1 (mod 4) and therefore 10" — 1 =1 (mod 4), which is
impossible. Hence, n = 1 and b = 3, and it follows that the only positive
rational numbers having the required property are 1/3 and 2/3.
First assume that 10" = 1 (mod n), that is that there exists an integer k
such that 10" = 1+ kn. Then, for each fraction m/n, we have

(1) 100" = km + .
n n

Assume that m/n = 0.ajaza3 . .. ; then equation (1) allows us to write
m
km + —7; =a102...0h.0p4+1AR42 - - -

Equating integer parts and equating fractional parts shows that

(2) km = aias...ap
and that

m
(3) ; = 0.ah+1ah+2 e

But equation (3) confirms that the digits ap41, ap42,. .. are precisely the
digits a1, az,... . This means that the expansion of m/n repeats itself
after h digits and therefore that the period of m/n is h.

Conversely, if m/n is of period h, that is

m
— =0.a1a2...apa1...0ap ...,
n

then m m
10h——alag...ah:0.a1a2...ah...: —
n n

Consequently
(10" — 1)m
n

is an integer. Since m and n are relatively prime, then we have n|(10"—1).

Finally, assume that the period of m/n is h and that 10f0 = 1
(mod n). Then, m/n also has hy digits which repeat themselves and
ho > h. In particular, h is the smallest positive integer satisfying 10" = 1
(mod n).
In the solution of Problem 348, it is proved that km = ajas...an, which
yields the result.

=aiadz...ap
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This follows from the fact that 10"(m/n) — (m/n) = a1az .. . a,.

Let N =271 4+24-1 _ 1, We will show that 2¢ —1 > 3 is a proper divisor
of N, thereby showing that N is a composite number. Since 2¢ — 1 is an
odd number, it is enough to show that 2¢ — 1|2N. But

2N =27 424 _2=2" 1424 1=(24)/d 1424 1
= (24— 1)@V 424G ... 424 L 1) 4 (24— 1),
which proves the result.
Let n = 29 — 1, where q is a prime, be such a number. Since q is odd and

u%(n) = 0, there exists an odd prime number p such that p?|n. We then
have

(1) 29=1 (mod p?).

On the other hand, using Euler’s Theorem, we have 2¢(P*) = 1 (mod p?),
so that

(2) 2P~ =1 (mod p?).

It follows from (1) and (2) that g|p(p — 1), which implies that g|(p — 1)
(since if ¢ = p, then 29 = 1 (mod q), contradicting the fact that 297! =
(mod q)). Hence, there exists a positive integer a such that p — 1 = ag,
which in light of (1) gives

271 = (29 =1°=1 (mod p?),

thus establishing that p is a Wieferich prime.

REMARK: Only two Wieferich primes have been found so far, namely 1093
and 3511; it is known that there are no other such primes smaller than
1.25 x 103,

We will show that the three smallest prime factors of n are 2, 3 and 11.
First of all, it is clear that 2|n. To see that 3|n, it is sufficient to observe
that

59 7112 =9% _ 112 - (_1)% _1-1-1=0 (mod 3).

Clearly, 5 and 7 are not prime factors of n. Let us check if 11 divides
n. By Fermat’s Little Theorem, we have 51 = 1 (mod 11) and 7% = 1
(mod 11), so that

5% = 5%.56=1.1252=42=16=5 (mod 11),

7112 = 710,72 =1.49=49=5 (mod 11).
Combining these two congruences, we easily conclude that 11|n.

a
Let N = m + % — 1. We will show that m — 1|N. To do so, since m —1
is odd, it is clear that we shall reach our goal if we can manage to show
that m — 1|2N. But
IN=me4+m—-2=m—14+m—-1=(m—-1)m* 1 4+m*24...
+m+1) + (m - 1),

which proves the result.
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Let u,, = 22" + 3. As soon as 2" = 3a — 1, then u, can be written as

3\a 3
@, 2
2 2
a number which is composite by Problem 354 if a > 2. Now, there exist
infinitely many positive integers n such that 2" = 3a — 1 for a certain
positive integer a. Indeed, if n is odd, then 2" +1 = (-1)"+1 =0
(mod 3), and this is why all numbers of the form 22" 43, with n > 3 odd,
are composite.
We first write

U, =231 422 1=

(25)13 25
1.
2 + 2

Applying the result of Problem 354 with m = 2% and a = 13, we obtain
that m — 1 = 2% — 1 = 31 divides NN, and the result follows.

The answer is NO. Indeed, although 22" + 15is prime forn = 0,1, 2, 3,4, 5,
when n = 6, we have

22° 15 = 18446 744073709551 631 = 31 - 107 - 5 561 273 462 077 043.

To avoid using a computer in order to obtain this last factorization, one
can consult the solution of Problem 356 to learn that 31|(226 + 15) and
therefore that this last number is composite.

This follows from the fact that 973 = 1000 — 27 = 103 — 33 is a divisor of
10° — 3° and from the fact that 139]973.

We have n = 10% — 72 = (103 — 7)(10® + 7) = 993 - 1007 = 3 - 331 - 1007.
But since n has a prime factor p such that 300 < p < 400 and since 1007
is not divisible by 3, we conclude that p = 331.

We have

22 —1=(2")%—1=(2"-1)((2")*+ (2") +1) = 127- ((2")2 + (2") + 1)

and the result follows.
We have

2 1 = 20 1=(2%241)(22-1)= (22 +1)
. (216 + 1) (216 _ 1)

N=22115=264 124 1=

(22 4+1) 210+ 1) (28 +1) (28 —1)

(22 +1)(2"%+1) (2°+1) (2* +1) (2* - 1)

(22 +1) (2% +1) (22 +1) 2 +1) (22 + 1) (2>~ 1)
(2*2+1) (2" +1)-257-17-5- 3.

The numbers 3, 5, 17 and 257 are therefore each a prime factor of 22° 1.
REMARK: The complete factorization of 22° — 1 is:

22° _1=3.5.7-257-641 - 65537 - 6700417.

(362) In fact, one can show slightly more. Indeed, if S (N) stands for the

number of positive integers n < N such that r, :=n10™ 4+ 1 is prime, we
have that

) 5.0z [§] +rm vz,



(363)

(364)

(365)

(366)

(367)

(368)

(369)

SOLUTIONS 179

In order to prove (x), we first observe that if n = 2 (mod 3), then 3|r,;
this follows from the fact that, in this case, n = 3k+2 for a certain integer
k > 0, so that

n10"+1 = (3k+2)10%*+24+1 =200-10%*+1=2-1**+1=0 (mod 3).

On the other hand, it follows from Fermat’s Little Theorem that if n + 1
is a prime number p > 5, then r,, is a multiple of p, since in this case we
have n = p — 1, so that

nl0" +1=(p-1D10P 1 +1=(p—1)+1=0 (mod p).

From these two observations and the fact that S;(11) = 8, inequality (x)
follows.

REMARK: Using a computer, we obtain that the smallest seven positive
integers n such that n10™ + 1 is prime are 1, 3, 9, 21, 363, 2161 and 4839.
In light of Problem 75, we have that 22 —1=3,23—1=7and 2°—1 =31
are divisors of 230 —1. Similarly, we have that 25 —1 = 31 and 27 —1 = 127
are prime factors of 23% — 1.

Let n = 230 — 1. Since n = 230 — 1 = 23(11-1) _ 1 — 811-1 _ | and since
(8,11) = 1, Fermat’s Little Theorem then yields the result.

Using Problem 75, we have that 3*—1 = 80 and that 35 —1 = (33—-1)(33+
1) = 26 - 28 divides 3!? — 1. Then it follows easily that 2, 5, 7 and 13 are
prime factors of 312 — 1. Similarly, we have that 3% —1 = (3*-1)(3*+1) =
80-82 and that 32 —1=(35-1)(3°+1) = (3 - 1)(3> + 1)(3 + 1) =
26 - 28 - 730 divides 324 — 1. From this, it follows that 2, 5, 7, 13, 41 and
73 are prime factors of 324 — 1.

Since m is odd, we have

a"+1=(a+1) (@™ —a™24+a™3 - . —a+1),

and the result follows.
This shows that

1001 =10°+1= (10—1—1)(102— 10+1)=11-91=11-7-13.
The result is immediate if we write
a™+1=(a™He+1

and we then apply the result of Problem 366.
This shows that

1000001 = 10° + 1 = (10% + 1)(10* — 10% + 1) = 101 - 9901.
It follows from Problem 367 that
101° +1 = (10® + 1)((10%)* — (10%)® + (10%)? — 10> + 1).

The result then follows from the fact that 7, 11 and 13 are factors of 1001.
It is enough to observe that n* + 4 = (n? — 2n + 2)(n? + 2n + 2). For the
general case, we only need to observe that

n*+a? = (n® —V2an+a)(n® + vV2an +a).

Let us mention that the condition “n > v/2a” is sufficient but not neces-
sary.
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We will show that if & = 2 (mod 6), then k10* + 1 is a multiple of 3.
Indeed, if K = 65 + 2 for a certain nonnegative integer j, then

k10F +1 = (65 +2)10%%2 + 1=6j+2+1=0 (mod 3),

which proves the result.

REMARK: It is easy to see that, given a prime number p # 2,5, then
for each positive integer k of the form k = (jp + 1)(p — 1), where j is a
nonnegative integer, we have p|k10*¥ + 1. Indeed, for such a prime number
p, it follows from Fermat’s Little Theorem that 10P~! = 1 (mod p), so
that

k10 +1=(jp+1)(p— 1)(10PDYPH 4 1 = (jp+1)(p—1) + 1
=jp’+p—jp—1+1=0 (mod p).

Indeed, let p = k + 2 be a prime number. Then, from Fermat’s Little
Theorem, we have kP~! =1 (mod p). Since p — 1 = k + 1, it follows that
k¥+t1 =1 (mod p). Finally, since k = p—2 = —2 (mod p), we then obtain
successively

k-k*=1 (mod p),

—2-k*=1 (mod p),

2k¥ = -1 (mod p),
which establishes that p|(2k* + 1), as required.
The result follows from the identity

242 L 1= (2771 —2m )27 427 4 1),

which is easily proved by a simple multiplication of the two factors of the
right-hand side. Thus, we obtain

2% 1 1= (220 - 215 1 1)(22° +- 21° 4 1).
Observing that
229 _o15 1 =4 .2 45. 28 1=(-D".2-(-1)%.8+41
=2-341=0 (mod5),

we quickly obtain 5 as a third factor. In fact, without any difficulty, we
obtain that the factorization of 28 + 1 is

258 11 =15.107367629 - 536 903 681.

First let g|M,, ¢ prime. By definition, we have 2 = 1 (mod q), while
by Fermat’s Little Theorem we have 297! =1 (mod q). This means that
plg — 1, and this is why ¢ — 1 = £p for a certain positive integer ¢. Since ¢
is necessarily even, the result follows. Finally, if 7|My,  composite, then
7 = q192 - - - qs for certain prime numbers ¢; < ¢ < ... < gs. But it
follows from the first part that ¢; =1 (mod 2p), i = 1,2,...,s, in which
case r = qiq2 -+ qs = 1 (mod 2p), as required.
In the case p = 61, the Lucas-Lehmer Test can be programmed as follows
with MATHEMATICA:

p=61; s=4; j=1; mp=2"p-1;

While [j<p-1, {r=Mod[s"2-2,mp]l);s=r;j++}];

If [Mod[r,mp]==0,Print["2"",p,"-1 is prime"],
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Print["2"",p,"-1 is composite"]]
(375) Using several times the identities a? — b* = (a + b)(a — b) and a® + b® =
(a+ b)(a® — ab + b?), we obtain

10¥% -1 = (10 4+1)(10%* — 1)
= (10* +1)(10"* + 1)(1012 1)
= (10%* 4+ 1)(10" + 1)(10° 4 1)(10° — 1)
= (10 4 1)(10 + 1)(10® 4 1)(10% + 1)(10® — 1)
= (10** +1)(10" + 1)(10% 4+ 1)(10 + 1)(10* — 10 + 1)

(10 —1)(10% + 10 4 1)
= (10® +1)(10'® — 10® + 1)(10* 4 1)(10® — 10* + 1)
(102 +1)(10* — 102 +1)-11-91-9- 111.

On the one hand, 10 +1 = 17-5882353 and 10* + 1 = 73 -137. On the
other hand, using the Lucas-Lehmer Test, we obtain, taking successively
a="7a=13and a =6, that 101 —108+1, 108 —10*+1 and 10* —10%+1
are prime. Gathering these results, we obtain that

10 -1=3%.7-11-13-17-37-73-101-137-9901 - 5882353
-99.990 001 - 9999 999 900 000 001.

(376) We first look for positive integers n for which the corresponding number
N is divisible by 7. Since 78557 = 3 (mod 7), then we are looking for
integers n such that

N=78557-2"+1=3-2.2""14+1=6-2""14+1=0 (mod7),

that is integers n such that 2°~! =1 (mod 7). Since the order of 2 modulo
7 is 3, it follows that 3|n — 1; that is n = 1 (mod 3). Then, we look for
positive integers n for which the corresponding number N is divisible by
13. Since 78557 = —2 (mod 13), we need to solve 2"*! = 1 (mod 13).
Since the order of 2 modulo 13 is 12, we obtain that 12|n + 1; that is

= —1 (mod 12). Similarly, we obtain that 3|N if and only if n = 0
(mod 2), that 5|N if and only if n =1 (mod 4), that 19|N if and only if

= —3 (mod 18), that 37|N if and only if n = —9 (mod 36) and finally
that 73| N if and only if n = 3 (mod 9). To show that each positive integer
n satisfies at the very least one of the seven congruences, we only need to
observe that the seven congruences obtained are respectively equivalent
to the seven families of congruences enumerated below:

n = 1,4,7,10,13,16,19,22,25,28, 31,34 (mod 36),

n = 11,23,35 (mod 36),
n = 0,2,4,6,8,10,12,14,16,17, 18,20, 22, 24, 26,
28,30,32,34 (mod 36),
n = 1,5,9,13,17,21,25,29,33 (mod 36),
n = 15,33 (mod 36),
n = 27 (mod 36),
n = 3,12,21,30 (mod 36).
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Since these congruences cover the set of all equivalence classes modulo 36,
the result follows.
Using the identity n®+1 = (n+1)(n? —n+1) several times, we can write
107 4+1 = (10°+1)(10™ — 10° 4+ 1)
(10% +1)(105 — 103 + 1)(10™® — 10° 4 1)
(10 4+ 1)(10%2 — 10 4 1)(10% — 10% 4 1)(10*® — 10° + 1)
= 11-91-(10%—10% +1)(10"® — 10° + 1)
= 7-11-13.(10° — 10® + 1)(10'® — 10° + 1).
We have thus found the three prime factors 7, 11 and 13.
REMARK: The complete factorization of 1027 + 1 is:
7-11-13-19-52579- 70541929 - 14175966 169.

Starting with = = 45, we obtain that 22 — n = 452 — 2009 = 16, a perfect
square. It follows that
2009 = 2025 — 16 = 45% — 42 = (45 + 4)(45 — 4) = 49 - 41.

We first compute v/n = 538.285. ... We therefore choose z = 539, and we
compute z2 — n = 290521 — 289751 = 770, which is not a perfect square.
We then take x = 540, and we obtain x? —n = 291600 — 289751 = 1849 =
432, the desired perfect square. We thus have

289751 = 540% — 432 = (540 + 43)(540 — 43) = 583 - 497.
Observe that 289751 =7-11-53-71.
We first try with pg = 3. We then have
m=3n = 31254713 = 3764139.

Then, set a = [y/m] +1 = 1940 + 1 = 1941. Since a® — m = 19412 —
3764139 = 3342 is not a perfect square, we set a = 1942, in which case
we obtain a? — m = 19422 — 3764139 = 7225 = 85%. We conclude that
m = 1942% — 852 = (1942 — 85)(1942 + 85) = 1857 - 2027 = 3 - 619 - 2027,
from which we obtain that the factorization of n is

n =619 - 2027.

Fermat’s Factorization Method consists of finding integers a and b such
that n = a? — b%. We then have n = (a — b)(a + b) = pq, so that
J_btae ., _a-p
2 2
The first choice of a is a = [\/n] 4+ 1. As long as va? — n is not an integer,
we set a = a + 1, until eventually /([v/n] + k)2 — n is an integer. If k is

the required number, it is clear that k ~ a — /n. But

]
(1) a—\/ﬁ:pT—'_q—\/p_zp(l-i-E— 1+5).
The series expansion of 1 + % — 1+ 6 gives
é 52
(2) 1+§—\/1+5:§+R(53),

where |R(62)| < §%. Combining (1) and (2) gives the result.
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By hypothesis, we have p ~ 3q. We shall therefore apply Fermat’s Fac-
torization Method to the number m = 3n = 3pq = 566058039. We first
observe that [y/m]| = 23792. Choosing a = 23792, we quickly realize that
a? —m = 566059264 — m = 1225 = 352 = b2, so that

566058039 = 237922 — 352 = 23757 - 23827.

Since it is easy to see that it is 23757 which is divisible by 3, we conclude
that the complete factorization of 188686013 is given by

188686013 = 7919 - 23827.

Since ¢ := % is an integer > 3, it is clear that
(%) n(r—l):rk+1—1:(r£~|—1) (ré—l).
If Z is even,

rf—1= <T€/2+1) (7‘5/2—1),

in which case (x) becomes

n(r——l):rkﬂ—l:(re—i—l) (ré—l)

= (r* +1) (T@/2+1) <r£/2—1),

so that
[t () (1) SR if £/2 is even,
(rf+ 1) 2+ 1) (r™ 4 rm 2+ 41+ 1) if £/2=mis odd,

that is, in both cases, the product of at least three distinct integers larger
than 1.
On the other hand, if £ is odd, then

rt4l1=(r+1) (rl_lfre_2+re_3—~-~—r+1),
in which case (x) becomes
nr—1)=rf*t-1=(r+1) (" -2+t 3 - b 1) (P - 1),
so that
n=>+0)Er =2 e D 2 e ),

that is again a product of three integers larger than 1, which are in fact
distinct if r > 3 orifr=2and k£ > 7.

First of all, it is clear that each of the elements of the set represents a
positive odd number and that this set contains at most 2* integers. To
prove that two numbers of the type 25 4+25—142k=24...421 +1 cannot be
equal, assume that there exist ag, 1, ..., ak—1,00,51,---,0k—1 € {—1,1}
such that

(1) 2P+ 128 o 02872 4o 02t +ap = 28 + By 28
FBe—22 2+ + B2t + By

without having each a; = ;. If such is the case, then let j be the first
subscript such that a; # 8;. We may assume that o; > (3;, in which case
a; — f; = 2 and therefore (1) becomes

(2) 2%+ (ejo1 = Fj-1)2 T 4+ (a1 = B1)2 + (a0 — o) = 0.
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But it is easy to establish that

(01— B;—1)2 " + -+ + (a1 — $1)2 + (a0 — Bo)|
<242t 424 1= — 1< 20

and this is why (2) is impossible, in which case we must have
Oéi:ﬁi fOIiZO,l,Q,...,kvl.

Thus the result.

(384) (i) Such a number k must be prime, because if it is not, then k = ab with
1 < a < b < n, in which case 10‘1;’—1 = 110;:__11 . 10’;_1, the product of
two integers > 1.

(ii) So let p be a prime number, and let g be a prime factor of (107 —
1)/9. Since it is clear that ¢ # 2,5, we have from Fermat’s Little
Theorem that 109! = 1 (mod g). On the other hand, we have by
our hypothesis that 10?7 = 1 (mod ¢). Combining these two relations,
we may conclude that p|g—1 and therefore that there exists a positive
integer ¢ such that ¢ — 1 = ip. Since ¢ — 1 is even, it follows that
1 = 27 for a certain positive integer j, and the result follows.

(iii) We obtain that the five smallest prime numbers p such that the cor-
responding number (107 — 1)/9 is prime are 2, 19, 23, 317 and 1031.

(iv) The following is a table displaying the factorization of the numbers
(107 — 1)/9, for each prime number 3 < p < 67, p # 19,23:

p factorization of (107 — 1)/9

3 3-37
5 41-271
7 2394649

11 21649 - 513239

13 53-79-265371653

17 2071723 - 5363222357

29 319116763 - 43037 - 62003 - 77843839397

31 27916943319 - 57336415063790604359

37 2028119 - 247629013 - 2212394296770203368013

41 831231 - 538987 - 201763709900322803748657942361

43 1731527791 - 1963506722254397 - 2140992015395526641

47 35121409 - 316362908763458525001406154038726382279

53 107 - 1659431 - 1325815267337711173

-47198858799491425660200071
59 2559647034361
-4340876285657460212144534289928559826755746751
61 7334637329401 - 974293 - 1360682471
-106007173861643 - 7061709990156159479
67 493121 - 79863595778924342083
-28213380943176667001263153660999177245677

REMARK: It is interesting to observe that each of the above numbers
(10 —1)/9 is squarefree (as is the case for Mersenne numbers 27 — 1
for which the factorization is known).
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From (*), we obtain that

n o= gl g g2kl

— (:L‘ +y)(x2k _ x2k—1y +.732k_2y2 L :L,ka—l +y2k).
Since 2 < x +y < 22kt 4 y2k+1 it follows that = + y is a proper divisor
of n and therefore that n is composite.
By hypothesis, there exist positive integers  and y such that
po-n=1a’+y° = (¢ +y)(«® -2y +y°).

The result then follows if we can prove that (i) z + y # po and that (ii)
x + y is a proper divisor of n.

First assume that (i) is false; that is z + y = pg. We will then have

po = (z +9)°* > 2° +y° = pon,

which implies that pZ > n and therefore that py > \/n, which contradicts
the hypothesis py < \/n.

Since z + y > 2, in order to prove (ii), it is enough to prove that
T+ 1y < n. Assume the contrary, that is that  + y = n. Without any loss
in generality, we may assume that z > y > 1, in which case 2z > z+y = n,
so that z > n/2. But, in this case,

pon =2° +y° = (z +y)(2° — 2y +y°) = n(a® — zy +¢?),
which implies that

n
posz—zy—i—yZ>x2—xy:x(x—y)>x>5,

contradicting the fact that py < v/n.
We easily observe that

=28 4+7173 = (24 717)(2% — 2- 717 + 717%),

so that 719|7n. Since (7,719) = 1, it follows that n is composite and that
719|n.
We easily observe that

1ln = 1% +1212°
= (1+1212)(1* — 13- 1212 + 12 - 12127 — 1 - 12123 + 1212%),

so that 1213|11n. Since (11,1213) = 1, it follows that n is composite and
that 1213|n. In fact,

237749938896 803 = 41 - 1213 - 4780526791.

Let b be an integer such that (b,n) = 1, and let p be a prime number such
that p|n. Then, (b,p) = 1 so that

¥~ 1=1 (modp).
It follows that
pn—1 — (bp—l)(”_l)/(l’—l) = 1(n—1)/(p—1) =1 (IllOd p)7

which implies that n is a Carmichael number.
REMARK: The reciprocal of this result is true (see Giblin [14], p. 156) so
that an odd composite number n > 3 is a Carmichael number if and only
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if it is squarefree and p|n = p — 1|n — 1. This result is called “Korselt’s
Criterion”.

First of all, we show that there exists a positive integer m such that
p = 6m + 1. Indeed, if this is not the case, then p = 6m + 5 for a certain
integer m, in which case 2p — 1 = 12m + 9 = 3(4dm + 3) would not be
prime. We can therefore write

n=(6m+1)(12m+1)(18m +1)=p-q-r,
say. Since
n—1=6-12-18-m3+ (6-12+6- 18 + 12- 18)m2 + (6 + 12 + 18)m,
it is easy to see that
p—1=6mn—1, g—1=12m|n—1 and r—1=18m|n—1,

which guarantees that n is a Carmichael number, from Problem 389.
REMARK: Unfortunately, no one has ever proved that there exist infinitely
many triples of prime numbers of the form (p,2p — 1,3p — 2). Let us also
mention that (7,13,19), (37,73,109) and (211,421, 631) are such triples.
Using a computer, we obtain that there exist 228 triples of prime numbers
(p,2p — 1,3p — 2) with p < 100 000.

Let n be a Carmichael number. By definition, n cannot be a prime num-
ber. In light of Korselt’s Criterion, n cannot be a prime power (since it
must be squarefree). In fact, it is enough to show that n # pg, where
p < q are two odd prime numbers. Assume that n = pq. Then, we
should have p—1jn—1land ¢ —1jn—1,so that g —1ljn—1=pg—1 =
pg—p+p—1=p(g—1)+ (p—1), which implies that ¢ — 1|p — 1 and that
p—1n—1=pg—1=pg—q+q—1=q(p—1)+ (g — 1), and therefore
p — 1|g — 1. Combining these relations, it follows that p — 1 = ¢ — 1, that
is p = q, a contradiction.

First consider the case 7 = 1. Since

Q293 qx — 1 =q192G3 - Gk — q19293 " *qk + G243 " qx — 1

= Q19293 - - Gk — 9293 - - qe(q1 — 1),

it follows that q; — 1|gaqs - - gx — 1 if and only if ¢1 — 1|q1g2q5 - - gk — 1,
and the result follows.
Since 2% + y® = (z + y)(2? — zy + y?), we immediately derive from (%)
that 97 and 109 are (prime) divisors of 327 763. Since

327763

97-109
the complete factorization of 327 763 is then

327763 = 31-97 - 109.
Since 23 + y3 = (x + y)(x? — 2y + y?), we have that
7-n = 341532611 = 699 4 83 = (699 + 8)(699% — 699 - 8 + 82),

so that 7-n = 707 - a for a certain integer a, which means that n = 101-a.
Hence, 101 is a prime factor of n.
REMARK: The complete factorization of 48 790 373 is

48790373 = 31101 - 15 583.
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First of all, if n > 3 is even, say n = 2k, k > 2, then
" —7=2%_7—-4F _7=1"_1=0 (mod3).

Hence, if n is even, the number 2" — 7 is divisible by 3 and is therefore
composite.

If n =1 (mod 4), n > 3, then there exists a positive integer k such
that n = 4k + 1, so that

o —7=2%Ftl _7-168.2-7=1%.2-2=0 (mod 5).

Hence, if n = 4k + 1, the number 2™ — 7 is divisible by 5 and is therefore
composite.

If n =7 (mod 10), n > 3, then there exists an integer k > 0 such
that n = 10k + 7, so that

2" — 7 =2M0k7 71024 .27 - 7=1*.7-7=0 (mod 11).

Hence, if n = 10k + 7, the number 2™ — 7 is divisible by 11 and is therefore
composite.
If n = 11 (mod 12), n > 3, then there exists an integer k£ > 0 such
that n = 12k 4 11, so that
on — 7 =212kl 7 —4096F .21 —7=1%.7-7=0 (mod 13).

Hence, if n = 12k+11, the number 2™ —7 is divisible by 13 and is therefore

composite.
Therefore, we only need to consider the numbers n = 15, 19, 31,
39, ... . Using the instruction PrimeQ[2°n — 7] of MATHEMATICA, we

find that 2%° — 7 is prime.

Continuing this process, we obtain that the next five values of n with
the above property are 715, 1983, 2319, 2499 and 3775.

To find these values, using the MAPLE software, we type in the pro-
gram

> for n to 4000 do if isprime(2”n-7)

> then print(n) else fi; od;
Let
a? -1 a? +1 _azp—l
a—1 a+1 a2-1°
It is clear that n; and ny are odd. On the other hand, since n; = 1
(mod 2p) and ny = 1 (mod 2p), we have that n = 1 (mod 2p). Since
n|a?? — 1, we have a?? = 1 (mod n) and therefore a"~! = 1 (mod n),
which means that n is pseudoprime in basis a. Applying this method, we
easily find that the numbers 341 and 7381 are pseudoprime numbers in
basis 2 and 3 respectively.
REMARK: This method was imagined in 1904 by Cipolla to generate
pseudoprime numbers.
(Malo, 1903; see Williams [41]). Let n be a pseudoprime number in basis
2. If we show that the number N = 2™ — 1 is also pseudoprime, we shall
be done. First of all, N is composite, since 2" — 1 is divisible by 2* — 1 for
each divisor a of n. Since n is pseudoprime, n|2"~! — 1, and this is why
n|2" —2 = N — 1. It follows that N = 2" — 1|2V~ — 1 and therefore that
2¥-1 =1 (mod N) as required.

n=mny- -ng—
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(398) If n=ks+7r,0<r <s, then

(399)

(400)

(401)

(402)

(403)

a® = aks+r — (as)k a”

and therefore, since a™ =1 (mod m), we have a” =1 (mod m). But since
r < 8, this contradicts the minimal choice of s, unless » = 0, in which case
s|n.

(Brillhart, Lehmer and Selfridge, 1975). It is clear that we only need to
prove that ¢(n) = n — 1. Since ¢(n) < n — 1, it is enough to show that
n — 1|¢(n). But if n — 1 does not divide ¢(n), then there exists a prime
power ¢* such that ¢* divides n — 1 but does not divide ¢(n). If e is
the smallest exponent such that a® =1 (mod n) (see Problem 398), then
e|n—1, but e does not divide (n—1)/q, in which case ¢*|e. Since a®?(™ =1
(mod n), we have that e|@¢(n), and this is why ¢|¢(n), which contradicts
the above statement.

With MATHEMATICA, we write

n=10"12+61;w={2, 5, 3947, 12667849} ;
Do[Print[q=w[[i]l]," ",PowerMod[7, (n-1)/q,nl],{i,1,4}]

We then obtain the following table:

q 7(n=1)/4 (mod n)
2 1000000000060

5 49990566449
3947 818653818766

12667849 991362440375

so that indeed 7(»~1/4 2 1 (mod n) for each prime divisor q of n — 1. It
then follows from Lucas’ Test that n is prime.

Since n — 1 = r4, it is enough to find, for each r, a number a such that
a™ =1 (mod n) and such that a™*/7 # 1 (mod n) for each prime divisor
g of r. In the case r = 1910 = 2 -5 - 191, choosing a = 13 is convenient.
In the case r = 1916 = 4 - 479, the choice a = 3 is appropriate. Finally,
in the case r = 1926 = 2 - 32 - 107, choosing a = 5 is adequate. Thus the
result.

With MATHEMATICA, we write

n=10"12+63;w={2,3,7,47,168861871};
Do[Print[q=w[[il]," ",PowerMod[5, (n-1)/q,nl1]1,{i,1,5}]

We then obtain the following table:

q 5(n=1)/9 (mod n)
2 1000000000062

3 144114448610

7 385212254787

47 465337403973

168861871 578084528999

Hence by Lucas’ Test, we conclude that n is prime.
By Fermat’s Little Theorem, we have that 2°~* = 1 (mod p). Therefore,
since p— 1|k!, we have 2¥' = 1 (mod p) and therefore m =1 (mod p). We
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have thus shown that p|m — 1. This implies that p|g and therefore that
g > 1.
(404) Using the following MATHEMATICA program
n=2"(2"9)+1;k=40;i=2;s=3;
Whilel[i<=k,{s=PowerMod[s,i,n]; i++}];s=s-1; b=GCD[s,n];
Print[b]
we then find the prime factor 2424833.
(405) Let n = 252123019542987435093029. Using MATHEMATICA,

n=252123019542987435093029;k=500;i=2;s=2; Whilel[i<=k,
{s=PowerMod[s,i,n];i++}]; s=s-1;b=GCD[s,n];Print[b]
we obtain the prime factor p = 252097807237. Since n/p = 1000100010017
is a prime number, the complete factorization of n is

252123019542987435093029 = 252097807237 - 1000100010017.

(406) The following MATHEMATICA program
n=2"71-1;k=100000;i=2;s=3;
While[i<=k,{s=PowerMod[s,i,n];

If [IntegerQ[i/100]&&
((p=GCD[s-1,n])>1),
Print[i," ",p," ",n=n/p] 1;i++}]
gives the following table:

i p n/p

1700 228479 10334355636337793
7400 212885833 48544121
17100 48544121 1

which establishes the factorization
271 _ 1 = 228479 - 48544121 - 212885833.

(407) The factorization is 136258390321 = 104831 - 1299791.

(408) We first find m = 269146942 and g = (m — 1,n) = 17389. Applying the
Pollard p — 1 Test, we obtain the result.

(409) By hypothesis, we have

22" = —1 (mod p) and therefore 22" =1 (mod p).

Therefore, 2"+! is the smallest exponent such that 22" = 1 (mod p).
But by Fermat’s Little Theorem, 2~ = 1 (mod p), which means that
2"*t1p—1 and in particular that 8|p — 1 since n > 2. Therefore, using the
Euler’s Criterion, we have

2" = (%) =1 (mod p).

-1
It follows that 2! ’ pT and therefore that 2"*2|p — 1. We have thus

proved that there exists a positive integer k such that p — 1 = k- 2"+2,
thus the result.

(410) In light of Problem 409, each prime factor p of Fx is of the form p = k-27+
1. The first value of k for which the corresponding number p = k- 27 + 1
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divides F is k = 5, which gives p = 641, and we conclude that 641 is a

prime divisor of Fj.

In light of Problem 409, each prime factor p of Fg is of the form p =

k- 28 + 1. Using a computer, we verify that the first value of k such that

Fg/(k - 28 + 1) is an integer is K = 1071. The number p corresponding

to k = 1071 is p = 274177, which is indeed a prime number. Thus the

result. )

First assume that F), is prime and that (F) = —1. Then, by Euler’s
n

Criterion, we have

kU = (%) =-1 (mod Fy,).

Reciprocally, if kF = =1 (mod F,,), let r be the residue of k£ modulo

F,. Since = = —1 (mod F,), we have that r¥*~1 =1 (mod F,). Us-
ing the result of Problem 399, it follows that F;, is prime. Therefore,
(Fin) =k =1 (mod F,).

Leta=n+a,withne€Zand0<a<1l,andlet 5=m+b0<b<1.

(a) Proving this inequality amounts to proving that [a+b] < [2a]+[2b].
If 0 < a+b <1, the result is immediate. If 1 < a + b, then 2a + 2b > 2
and therefore [2a] > 1 or [2b] > 1, and the result follows.

(b) It is enough to show that 2[a + b] < [3a] + [3b]. If 0 < a+b < 1,
the result follows. On the other hand, if a + b > 1, then we must show
that 2 < [3a] + [3b]. Clearly, 3a+3b > 3. Now, since [z]+[y] > [z +y] -1
for all z,y € R, it follows that [3a] + [3b] > [3(a +b)] — 1 > 2, which gives
the result.

(c) It is enough to show that 3[a + b] < [4a] + [4b]. If 0 < a+b < 1,
the result is immediate. On the other hand, if a+b > 1, then 4a +4b > 4
and since [4a] + [4b] > [4a + 4b] — 1 > 3, we obtain the result.

Inequalities (d) and (e) are obtained in a similar manner.

This follows by observing that

(2n)!  (2n _o 2n -1

mH2 \n/) “\n-1)’

for each integer n > 1.

For part (a), in light of Theorem 27, it is enough to show that

]+ 1= 21+ [l ),

an inequality which is a consequence of Problem 413(a).
For part (b), again in light of Theorem 27, it is enough to show that

] [¢]: 5] 5]l

which itself follows from Problem 413(c).




SOLUTIONS 191

(416) Because of Theorem 27, it is enough to show that

B

i=1 i=1

Bl =] = )

we obtain the result after summing on .

(417) To obtain the number of zeros placed at the end of the number 23!, we
must find the largest number « such that 10%||23!. Since 23! contains
more 2’s than 5’s, it is enough to compute the largest power of 5 which
divides 23!. We are therefore looking for the largest integer o such that
5%||23!. This number « is given by

- [2]-

There are therefore four zeros at the end of 23!.

(418) We may write n! = 225*m where (m,10) = 1. The largest power of 10
which divides n! is b and since n!/10® = 2%7®m is an even integer, the
result follows.

(419) The integers n whose number of zeros appearing at the end of the decimal
expansion of n! is 57 are those whose largest power of 5 which divides n!
is 57. We are therefore looking for an integer n such that S,, = 57 where
Sno=[2] + [&] + [&] + -+ If n =200, then S, = 49; if n = 250,
then S,, = 62. Hence, if S,, = 57, we 1ust search amongst integers n such
that 200 < n < 250. We write n = 125 + 25a + 5b + ¢, where a = 3 or 4,
0<b<4and0 < c¢<4. Then, S, = 1+(5+a)+(25+5a+b) = 31+6a+b;
thus S,, = 57 if and only if 6a + b = 26. Since 0 < b < 4, we must have
a =4 and b = 2. Hence, n = 235 4 ¢ where ¢ =0, 1,2, 3,4. We conclude
that the integers m whose number of zeros appearing at the end of the
decimal expansion of n! is 57 are 235, 236, 237, 238 and 239.

For the second part, we proceed as with the first. We only need to
consider the largest power of 5 which divides n!. For n = 249,

249 N 249 n 249 _ 59

5 25 125 77
and for n = 250 the corresponding sum is 62. This shows that there does
not exist any integer whose number of zeros appearing at the end of the

decimal expansion of n! is 60 or 61.
(420) (a) The number « is given by

5°—3] [5"—-3] [5"-3 5" —3
o= ||+ ||t || Tt | T |

Since

Since [z + m] = [z] + m for m € N and since [-z] = —[z] — 1 for z ¢ Z,
we have
-3 -3 -3
n—1 n—2
a=>5 +5 +"'+5+|:?]+|:5—2}+"‘+|:Fj|
5. .4 5t —dn—1
_Z(S -)—-(n-1)= 1 :
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(b) We have
a:[p —z]+[p 2—1]_{_[1) 3—1]+”_+[pn;z]’
p p p p
and since [~z +m] = [—z]+ m = —[z] - 1+ m if z ¢ Z, then

—1

—i
a=p+p +-+p" T+ [?] + [;2—] +

i

(3

- n_(p—1)n—1
PP = ? (p—ln—-1
p—1 p—1

o0
(421) We must consider two cases. If p = 2, we have a = n + Z [2%] Ifp>2,
j=1

we have a = Z L—Z—]

j=1
(422) It is clear that if p = 2, then & = 0. We may therefore limit our search to
the case p > 2. Since

n

2 !
H(Zi—’,—l):1~3-5---(2n—1)-(2n+1):(zn_+n'),
i=0 ’

it is then easy to see that
[2n+1 [n
P et
(2n+1)!

Moreover, since the largest power of 2 which divides

~[2n+1] [n
OZZ[—zk ] - ) -m
k=1 k=1
which proves the given relation.

(423) (AMM, Vol. 82, 1975, p. 854). In fact, we must identify each integer n
which is divisible by an integer m such that m? < n < (m + 1)2. These
numbers n are obviously those of the form m?2, m? + m or m? + 2m.

(424) First of all, it is clear that

n=vn-n<ynn+l)</(n+1)2=n+1,

] is 0, we
have

so that
(1) 2n < 2y/n(n+1) <2n+2.
Moreover,

2y/n(n+1)=(Vn+vn+1)? - (2n+1).
Therefore, we derive from (1) that

2n < (Vn+vn+1)2—(2n+1) <2n+2,

which implies that
n+1<(Vn+vn+1?2<4n+3
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and therefore that

(2) Vin+1<vn+vVn+1<Vin+3.
Let k be the unique integer such that
k2 <d4n+1< (k+1)2
Hence, between the integers k2 and (k + 1)?, we find the integers 4n + 1,
4n + 2 and 4n + 3. How can we confirm that these last two numbers are

not “at the right of (k + 1)?”? The reason is that no perfect square is of
the form 4n + 2 or 4n + 3. Therefore, we must have

k> <dn+1<4n+2<4n+3 < (k+1)2

Hence, it follows that

E<Vin+1l<Vin+2<Van+3<k+1.

Finally, since, in light of (2), the quantity v/n++/n + 1 shows up between
V4n + 1 and v/4n + 3, the result follows.
(425) (AMM, Vol. 95, 1988, p. 133). Let z = \/n+ /n+ 1+ +/n+ 2. Then,

z2=3n+3+2(\/n(n+1)+\/n(n+2)+\/(n+1)(n+2)).

For n > 1, the inequalities (n+2/5)2 < n(n+1) < (n+1/2)?%, (n+7/10)% <
n(n+2) < (n+1)2 and (n+7/5)? < (n+1)(n+2) < (n + 3/2)% lead to
9n + 8 < 22 < 9n + 9, in which case [z] = [v/9n + 8]. The case n = 0 is
verified directly.

(426) (MMAG, Vol. 48, 1975, p. 292). Let m = ak+b, witha,b e N, 0 < b < k.
We then have

- [ - e [

k

(427) First let x € Q; that is * = §, say. Then, blz € N and m!z € N for
each m > b. Hence, as soon as m > b, we have cos?(m!rz) = 1 and
this is why lim,,_,[cos?(m!mz)] = 1. On the other hand, if z € R\ Q,
then m!z € R\ Q, which implies that 0 < cos?(m!rz) < 1 for all m > 1
and that [cos?(m!mz)] = 0 for all m > 1, which of course implies that
lim,, o [cos?(m!nz)] = 0.

(428) We first write n in basis 2:

n=-eo+e12+e2% +e32> +e42% +e52°+---,
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where each e; € {0,1}. Then, it is easy to establish that

—n—;—l- = egtert+e2+es2’+e423 +es2 g2+,
'n1—2_ _ 61+ e+ es2+es2 +es2® +eg2tt e,
”;'4- - es+es+es2+es2’ +eg2d 4,
n1-281 - e3+es+es2+ e+,

and so on. By adding the respective columns, we easily obtain the result.
If m is an integer satisfying this equality, it is easy to verify that m 425
also satisfy this equality. Consequently, it is enough to show that this
equation is true for all integers m such that 17 < m < 41. But for such
integers m, we have [(m — 17)/25] = 0, and therefore it is enough to show
that, for these integers m,

m 8m + 13
. )=o)
3 25
If 17 < m < 39, then
m _8m+13 m+09
— < <
3~ 25 3
and therefore (x) is verified. For m = 40 and m = 41, the result is
immediate.

For each m € Z, the value of this quantity is 7. Indeed, since [a + m] =
[a] + m for m € Z, the expression of the statement can be written as

m_ | =7
L [3mta] 13
13 4

We will show that, for all m € Z,

m—7

sm+4] |77 { 13 }
)
If m is an integer satisfying this equality, it is easy to verify that m £+ 13
also satisfy this equality. Consequently, it is enough to show that this
equation is true for all integers m such that 7 < m < 19. But for such
integers m, we have [(m —7)/13] = 0, and therefore it is sufficient to show
that, for these integers m,

© =175

If 7<m <16, then

I3m+4 < m+0.9
13 4

m
—<
7S



SOLUTIONS 195

in which case (x) is verified; for m = 17,18 and 19, (x) is immediate. The
expression of the statement is therefore always equal to 7 and thus does
not depend on m.
(431) We consider the two possible cases: £ > n/2 and k£ < n/2. In the first
case, for 1 < i < k, we have
n—1

k

n 2
<—-—<n-—=2
k_nn

e

On the other hand, still with this case, we have (n —4)/k > 1 if and only
if i <n — k. It follows that

SRR SR

Jj=1 Jj=1 Jj=1

b

so that

which establishes (*) in this first case. To study the second case, we have
that there exist positive integers a and r < k such that n = ak + 7, in
which case

k N

——
T k—r

=ar+(a—1)(k—r)=ak—k+r=n—k,

k .
Z;[n—]} —atat-tat(@a—1)+-+(a-1)

which completes the proof of the second case.
(432) Let o = [o] + g, with 0 < 3 < n, then

(1) [na] = [n]e] + 8] = nla] + [4],
while
@) [of + [a+—] +ot [a+” 1} :g [[a]+ﬂ:J]
:n[a]+§[5:j] | ]+JZ:;[B+::—J]
e [P 3 [P
18]
=nla] + ':llzn[a]-l—[ﬁ].

The result then follows by comparing (1) and (2).
(433) It is enough to replace a by a/n in Problem 432.
(434) Let
S={(z,y) eNxN|1<z<n-11<y<m-1}

It is clear that #S = (n—1)(m —1). Now let S; = {(z,y) € S | mz > ny}
and S = {(z,y) € S| ma < ny}. Since (m,n) = 1, there is no point with



196

(435)

(436)

1001 PROBLEMS IN CLASSICAL NUMBER THEORY

integer coordinates on the line y = mz/n, and this is why
S1US;=8 and S;NSy=0,

and by symmetry we have
S n—1)(m-1
T L,

For a fixed integer x chosen arbitrarily in the interval [1,n — 1], there is

mzx
exactly [—} points with integer coordinates of abscissa z located on the

line ma = ny. Therefore,

ety e n—1 -1
=3 X =3 [T

z=11<y<mz/n

as required.
Let

S={(z,y) eNxN|l<z<n-1,1<y<m-1}.
It is clear that #S = (n — 1)(m — 1). Let
S ={{z,y) € S|mz>ny}t and S;={(z,y)€ S| mz<ny}.

Since y = mz/n = myx/n;, where m = myd, n = nid, it follows that for
T < n, there are d — 1 points with integer coordinates on the diagonal.
For a fixed integer = chosen arbitrarily in the interval [1,n — 1], there are

mzx
exactly [—} points with integer coordinates of abscissa = located on the

line mz = ny and d — 1 on the diagonal. Therefore,

s-3 3y -y,

z=11<y<mz/n z=1
and similarly
m—1 m—1 ny
Sa= 1= [2].
m
y=1 1<z<ny/m y=1

Hence,

#S1+#S2=(m—-1)(n—-1)+ (d-1),
and since the number of points with integer coordinates is the same for
both sets, we obtain the result.
The number of points with integer coordinates inside or on the contour of
the rectangle formed by 1 <z < n and 1 <y < m is mn. Let y = mz/n
where (m,n) = d. Then, on the diagonal, there are d = (m,n) points
with integer coordinates. Since both sums
m . n .
SO
=1 L™ =L

contain (m,n) integer coordinates on the diagonal, it follows that

(%) mn = i [%} + i [ij] = (m,n).

j=1 j=1
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But using the result of Problem 435,

m—1 jTL n—1 ]m
> 5= 5
j=1 j=1

Combining this last relation with (), we easily obtain the result.
(CRUX, 1988). Observe that

Vin+ 12+ (n+1)=+/(n+1)(n+2).

But
(n+1)2<(n+1)(n+2) < (n+2)%
Hence,
n+l<y/(n+1)(n+2)<n+2,
and therefore
[ (n+1)(n+2)} =n+1.
Hence,
[ (n+1)2+n+1]2 = (n+1)3%
and it follows that
f)=mn+1)2+n—(n+1)?=n,

which proves that f(n) —n = 0 for each positive integer n.
From Theorem 27, for each prime number p < n, we have

(1)

i=1

So let p < n, p fixed. Writing n = [d1,dp,...,dk]p, where di,ds, ..
are the digits of n in basis p, we have successively

S dg

(2) n = dlpk_1 +d2pk_2 + -+ dg_1p + di,
]
[; = dlpk'2 +dzpk—3+~-+dk—1,
n ] k—3 k—4
[17 = dip" " +dop"* + -+ di_s,
n ] k—4 k—5
[F = dip +dop® ™ + -+ di_3,
0
[pk—2 = dip+dy,
-
[

Combining (1) and (2), we obtain

ap=di (L+p+p>+ - +p" ) +dy (1+p+p*+-- +p9)
+ -+ dk—2(1+p) +di—1.
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Multiplying each side of this last equation by (p — 1), we then have

(p—Day
=di (P D) +do(p" P 1)+ de2(PP = 1) + dia(p— 1)
=dip"  +dop" P+ dymip— (di +Hda+ -+ dir)
=dip* " P4 diaptdi— (di+da+ -+ dr1 +di)

=n— sp(n),

as was to be shown.
(Putnam, December 2001). Since ||z|| = [z+1/2], we first want to evaluate

[v/n + 1/2]. But we know that for each z € RT, there exists a positive
integer m such that m — 3 <z < m + 1, that is [z + ] = m. Setting

x = +/n, we obtain

2 1 4m? + 4 1
Vn < m2+ @nﬁ%:nﬂ%—m—ﬁ——,

that is n < m(m + 1), and

1 1
ﬁZm—iﬁnzmQ—m—l—Z,

that is n > m? — m + 1. Using this observation and letting S be the series
to evaluate, we obtain successively that

[e's) 1 m?4+m 1
- Ele) B
n=m?-m+1

1
+om om 2m2 m+1 22m
1
92m

) %

g

3
ﬂ.

I
[\
]38

?

Il
-

Il
)

(¢
[y}
3l\)

-
3
t

/_\
I

1
2+1 (1 - 22—m) }
1
(1 - %)}
m:l
1 =1 > 1
‘2‘ Z om2 Z 2(m+1)2}
m=1 m=1
1 > 1
o(m-1)2 Z:l 9(m+1)2 }

m

3
I

)

3
ﬂ‘

Il
[\

[M]8

[\

§

Mln—l
7

3
ﬂ.
3
ﬂ.

I
\

Il
[\]
—— —— —— —/— 3
(]
Dy
3
=
/\
'
slH

—
+
N | =
+
NE

3
Il
w

Il
™o
M| o
Il
w

(440) Let {z} = x — [z] be the fractional part of z. Since

2{”}+1~ 1 if n is even,
2 |2 ifnisodd,
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it is easy to see that f(n) =2{%t!} + 1 and therefore that
n+1 n+1 n+1
f(n)-?{ 2 }+1—2( 5 —[ 2 })—1—1

1
:n+1—2r; }+L

The required formulation is therefore

fm):n+2—2[

n+1]

(441) Let us start with the computation of A, and examine the first terms of
this sum. We have

An — [11/2]+[21/2]+[31/2]+[41/2]+[51/2]+[61/2]—|—[71/2]+[81/2]
OV 4 =11+ 1242424242434

We quickly notice that the number of times that the integer ¢ (1 < i <
n — 1) appears in A, is equal to (i + 1)? — i2, so that

An =122 = 13) £ 2(32 = ) +3(82 = 3) 4+ (0= D(n® = (n— 1)?),

an expression which can be simplified as follows:

An = 22124232 -2.2243.42-3.33 ...
+(n — n? — (n—1)(n—- 1)?
- _12—22—32—..._(n_1)2+(n_1)n2
= (n—1)n? - (n— 1)72(271— 1) _n(n- 1)6(4n+ 1)’

where we have called upon the first formula given in the statement of the
problem. We have thus established that
A, = n(n — 1)6(4n +1)

Proceeding in the same manner, this time by calling upon the second
formula given in the statement of the problem, we prove that

(n—1)n%(3n+1)
4
(442) Let y = an — [an]. Since a? = a + 1, we have

(n=2,34,...).

B, =

(n=2,3,4,...).

a’n —[a?n] = (a+1)n—[(a+ 1)n] = an — [an] = y.
Hence,
(*) —y/a=y(l-a) = (a’n - [a®n]) — (a®n — alan]) = a[an] — [a*n],

and since 0 < y < 1 < a = (1+ V/5)/2, by taking integer parts on each
side of (*), we obtain the result.
(443) Tt is enough to observe that the solution a also verifies equation z3 —
2z — 1 = 0. Hence, setting y = 2an — [2an], we obtain an — [a®n] =
(2a + 1)n — [(2a + 1)n] = y, and this is why

(%) —% = y(2 — a®) = a®[2an] — 2[a>n).
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Since 0 < y < 1 < a, taking integer parts on each side of (*), we obtain
the result.
Under the conditions of the system, the inequality zy < n is equivalent
to z < n/y and, for y fixed, the number of such s is [n/y]. As y varies
from 1 to n, we therefore obtain that
n n n

N= [1] +'[2] *""+'[n}'
To obtain the other expression to which N must be equal, we only need
to observe that the number of points with integer coordinates located on
the vertical z = k and below the curve zy = n is equal to [n/k].
The number of integers amongst the numbers 1, 2, . .., n which are divisible
by 2F and not by 2¥+1 is [n/2F] — [n/2%*1]. Since [z] + [z + 1] = [2a],
it follows that setting z = n/2¥*l, we have that [n/2¥] — [n/28F1] =
[n/2F+1 +1/2]. If we sum this expression for k¥ = 0,1,2,..., we have then
counted all integers from 1 to n.
[na]  na-—{na} _Q_M _

0
o+ —,
n

This follows from the fact that

where {y} stands for the fractiongl part of ynand 0<h< Ln
Let m be the unique positive integer such that m* < [a] < a < (m 4+ 1)*.
Then, [{/a] =m = [" [a]}.
The following is a program written with MAPLE

> with(numtheory) :

> F:=proc(fonct,n)

> local r:

> r:=divisors(n);

> sum(fonct(r([i]), i=1..tau(n));

> end:

and we write F(phi,n);
The following is a program written with MAPLE

> for i from 1 to 1000 do

> if irem(F(tau,i),3) <> O then print(ifactor(i))

> else fi; od:
The following program written with MAPLE generates perfect numbers.

> for ¢ to 89 do

> Mersenne := 2! —1;

> if isprime(Mersenne)

> then print(sigma(i) = 2”"({ — 1)*xMersenne)

> else fi; od;

In both cases, the answer is NO.
This follows from the definition. For the second part, kf is not a mul-
tiplicative function, except when k = 1, because kf(1) = kf(1-1) =
kf(1) - kf(1), in which case k? = k. When k = 0, the function 0f = 0 is
not multiplicative because 0(1) = 0 # 1.

Finally, f 4+ g is not necessarily multiplicative: for instance, consider
f=g9=1
The answer is NO. Indeed, f(2-3-5) = f(2)-f(3)-f(5) =0 and f(3-5-7) =
f(3)- f(5)- f(7) =1 implies that f(2) = 0, which contradicts the fact that
£2-5-7) = £(2)- £(5) - f(7) = 1.
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(453) By definition, we have
(k—1)k k(k+1)
<
2 -~ " =T
(k=1Dk< 2n <k(k+1).
Since (k — 1)k and 2n are two even integers, we may write (k — 1)k <
2n — 2 < k? 4 k, so that, by setting N = n — 1, we have successively

(k—1)k < 2N < k? + k,

4k? — 4k < 8N < 4k* + 4k,

(2k —1)2 <8N +1 < (2k +1)%
2%k—1<VBN+1<2k+1,
2k <1++vV8N+1<2k+2,

1+V8N +1
kg#dﬁl,
it vin-T7 ”287’—7<k+1.

It follows from this that
k= [H— V28"_7] = H%,/gn —7

since ||z|| = [z + 1]. Because f(n) = 1/k, the result follows.
(454) Since

[\/E—I]ZZI, [%_1]=Zlv [%—1]=Zl,

a2<n a3<n at<n
a>2 a>2 a>2

y

and so on, we have that

f) =Y 1

k>2 ak<n
a>2

Let a be an arbitrary positive integer. If we can find an integer n such

that
(%) fn) = fln—1) =a,
then the result will be proved. In fact, it is enough to choose

n=2%".

Indeed, since

R G N A o

thereby displaying o representations of the form a* of the integer n, we
obtain (x).

(455) The only totally multiplicative function is the function p(n).

(456) If a < y/n < a+1,thena < vn—1<a+ 1, while if \/n = a, we have
[vn — 1] = a — 1. Therefore,

VAl — | ’—n—1]={ 1 ifn=a% a€N,

0 otherwise.
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It follows that f is multiplicative. However, f is not completely multi-
plicative since f(4) =1 # f(2)f(2).

(457) The functions v(n), g(n) and h(n) are strongly multiplicative.

(458) The answer is YES. First of all, it is clear that g is multiplicative. Now,
for £ > 2 and p prime, we have

g®*) = D u(d)f(d)

d|p*

M FQ) + 12 (p) f(p) + 2@ F(P?) + -+ 12 PF) F(PF)
P )+ @) fP) +0+---+0=1+p*(p)f(p) = g(p),

which proves that f is strongly multiplicative.
(459) The answer is YES. Indeed, by hypothesis, if p is an arbitrary prime
number and k a positive integer, we have

fo) = f(0*) = (f(p))*.

Hence, if f(p) # 0 and k = 2, it follows that f(p) = 1. We then have
established that the only possible values of f(p) are 0 and 1. But since f
is entirely determined by the set of values of f(p), it follows that {f(n) :
n=1,23,..}C{0,1}.

(460) This function g is not multiplicative. Indeed, if g were multiplicative, we
would have g(20) = g(4)g(5). But this last equality is not verified since
g(20) = 3 while g(4) = 2 and ¢(5) = 3.

(461) Let (x) be the equation which is to be proved. Set m = ¢ ---¢% and
n= qfl ---gP . Then,

(m’ n) _ q;nin{oqﬁﬂ . q;nin{ar,ﬂr}
and
[m’ n] _ q;nax{al,ﬁl} . q;nax{ar,ﬁr}'

If f is multiplicative, we have

F(mom)f(fmynl) = flgr™ @) f(grinten ),
FlGT) o pgrextensd).

Let k be an integer such that 1 < k < r. We examine what happens
with the factor gx and its exponent. On the left-hand side of (x), the
contribution of the factor gy is

f(q;nin{ak‘ﬂk})f(q;rcnax{akﬁk})

)

while in the right-hand side of (*), the contribution is
(@) f(g)-

Since these last two quantities are equal, the result follows.
The reciprocal is immediate because for (m,n) = 1, we have [m,n] =
mn and the equation gives f(mn) = f(m)f(n), which implies that f is a
multiplicative function.
(462) Part (a) follows from the fact that if (m,n) = 1, then

ymn) = [ p=][]p:[[p=7(m)(n).

plmn plm  pln
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Part (b) can be obtained by observing that
Y lu@o@) = [+ o) =[[a+p-1) =]]r=10).
d|n pln pln pln

An immediate application of the abc conjecture to the numbers n? — 1, 1,
n? (since (n? — 1) +1 = n?) yields

n? < M(e) - y(n? — 1)1+ pl+e,
which implies
n'Tf < M(e) - y(n? — 1)Me.
We then have
n< M)V y(n2 — 1)1 = M(e)/079) . y(n? — 1)1F15,

2e

Setting ¢’ = 7=, we thus have that for each ¢’ > 0, there exists a positive
constant My(e’) such that for each n > 2, we have

n < My(e') - y(n? — 1)”5/,

as was to be shown.
From Problem 461, we have for (m,n) =1,

f(km)f(kn) = f((km, kn))f([km, kn]) = f(k)f(kmn)
and therefore
J(km) f(kn) _ J(kmn)
f(k)  f(k) flk) 7
f(kn)
f(k)
Let kK € NU {0} be defined implicitly by f(3) = 3 + k. Then we have
successively, using the fact that f is strictly increasing and multiplicative,

which means that

is a multiplicative function.

f6) = [f(2)f(3)=6+2k,

f(5) < 5+2k,

f0) = f(2)f(5) <10+ 4k,

f9) < 9+4k,

f(8) = f(2)f(9) <18+ 8k,
(1) f(15) < 15+ 8k.

On the other hand, since f(3) = 3 + k, we have that f(5) > 5+ k and
therefore that

(2) f(15) = £(3)f(5) > 15 + 8k + k.

From (1) and (2), it follows that k = 0 and therefore that f(3) = 3. We
have then proved that f(2'+1) = 2! +1. Let us show that, more generally,
we have

(3) fr+1)=2"+1 (vr=1,2,...).

For this, we use induction. Assume that the relation (3) is true for v =r
and show that it is then true for v = r 4+ 1. But

fEH 42 =f)fQ +1) =2(2" +1) =2 +2.
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Since f is strictly increasing, this means that f(2"*! + 1) = 27+1 + 1.
Relation (3) is thus proved. The fact that f is strictly increasing then
implies that f(m) = m for all m € N.
(466) We only need to prove that g(p®) = ag(p) for each positive integer a and
each prime number p. But since
ka T T
™) _ i £ _ i L0

)= lim ——= =1
9(p*) = Jim —5— = lim =575 =a lim =

= ag(p),

the claim is proved.

(467) We have h(1) = 1if f(1) = g(1) = 1. Let n = nyny, where (ny,n2) = 1.
If n = dr, then d and r have unique factorizations d = d;d; and r = ryry
such that ny = dyr; and ng = darg. Moreover, (d,r) = 1 if and only if
(d1,71) = 1 = (dg,r2). This shows that h(ning) = h(ni)h(ng), that is
that the function h is multiplicative.

(468) Assume that (m,n) =1 and that [d,7] = mn. Then d can be written in a
unique way as d = dydy with d;|m and dz|n and also r = ryry with r1|m
and rz|n. In this case, [d1,71] = m and [dg, r2] = n, so that

hmn) = Y fdg(r)= Y f(d1)f(d)g(r1)g(rs)

[d,r]=mn [d1,r1]=m
[dg,'l‘g]:ﬂ
= Y fld)g(r)- Y f(da)g(r2) = h(m)h(n),
[d1,m1]=m [d2r2]=n

and the result follows.
(469) The answer is NO. Indeed, if f(p) = 1 for each prime number p, and
f(p*) = 0 for each integer a > 2 and each prime number p, then lim f(n)

does not exist.

(470) The answer is NO. Indeed, if f(2%) = 1 for each positive integer k, and
f(p*) = 0 for each prime number p > 3 and each positive integer k, then
lim,, o f(n) does not exist.

(471) (This problem is a result due to Paul Erdés). Let p and ¢ be two arbitrary
distinct prime numbers. Let k and £ = £(k) be two integers such that
pF < ¢¢ < pF*t1. It is clear that one can find two sequences ki, ko, ... and
£, 85, ... (with £; = £;(k;) for each 7) such that

(1) Pk < gb < phitl (i=1,2,..)),
and this is why
(2) kilogp < ¢;logq < (k; + 1) logp (i=1,2,..).
Dividing both sides of (2) by ¢; log p, we obtain
k; logg ki 1
3 — < =< — 4 —.
®) % “Togp “ G TG
ki ko
We have thus proved that the sequence AR converges and that
1 £
. ki loggqg
4 lim — = —-=.
@) i ¢;  logp

Since f is monotone and totally additive, it follows from (1) that
() kif(p) <tif(q) < (ki +1)f(p) (1=12,...).
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Dividing both sides of (5) by ¢; f(p), we obtain

ki fla) ki 1
6 S 2~
©) Lo flp) 44
These equalities also confirm that the sequence —él, 6_2’ ... converges and
1 £

moreover that

ki fl9)
7 lim — = =L,
@) imoo £;  f(p)
Since the limit of a sequence is unique, it follows from (4) and (7) that

flp) logp logp  logg

Since the prime numbers p and ¢ have been chosen arbitrarily, taking
p = 2 and choosing any ¢, (8) implies
flg _ 12
logg log2
Setting ¢ = f(2)/log 2, the result follows.
(a) We obtain

for each prime number gq.

o 2077 if j < q,
f1(2%) = o
1 if 7 > a.
(b) This is a particular case of the preceding question. We have indeed
that f7(2%) =1if j > a.
(c) It is for n = 7 (with k = 2).
(d) If n =4k + 1 (here a — b means that f(a) =b),
n=4k+1—-3n+1=12k+4 —-6k+2 — 3k +1,
which implies that
-1 3n 1 3n
Sy =3k+1=3("—=)+1="p - <41
fPln) =3k + 3 1 + 44—4<4+
On the other hand, if n = 4k + 3, we have
n=4k+3—-3n+1=12k+ 10— 6k+5— 3(6k +5) + 1 = 18k + 16,
which means that
f3(n) = 18k + 16 > 4(4k + 3) = 4n.
(e) The integer n = 62 will do. We have indeed
62— 31 —>94 —47 - 142 - 71 — 214 — 107 — 322 — 161 — 484.

(f) The answer is YES.
(g) Since n is odd, we have f(n) = 3n + 1 = 2%, with @ > 1 and r odd.
It follows that f2(n) = 22~ !r and therefore that

20-2, fa>9
3 _ = 4y
Fn {3r+1 ifa=1.

It follows from this that f3(n) > n if and only if @ = 1, which occurs if
2[3n + 1, and it happens with a probability of 3.
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(h) Choosing n = 5, we find that the iteration f(5), f2(5), ... enters an
endless loop, namely

5— 26— 13 — 66 — 33 — 166 — 83 — 416 — 208
— 104 — 52 — 26 — 13,

of which 13 is the turning point. Hence, the process never reaches 1.

(i) Let k be the integer defined by the relation 2% < n < 28+1 It is clear
that Syr(n) > k. Since 2¥*1 > n  we have k + 1 > log,n and therefore
k > logyn — 1. It follows that

Syr(n) > k >logyn —1

and therefore that Syr(n) > log, n, as required.

(j) We proceed as with the preceding problem. However, since f(n) =
3n + 1, we are thereby adding a stage to the process (by passing from n
to 3n + 1) and in fact at least two more, since we more than double the
number n.

(k) The result can easily be proved by successive iterations.

(1) We simply use (k).

(m) The result is essentially a generalization of parts (k) and (1).

(n) With the choice n = 22*! — 1, and calling upon (k), we obtain

f2a+1(n) B 2(30t+1 _ 1) - 2(3a+1 _ 1) B 3a+1 —1 - 3a+1
n 2201 2.20 2o 20+1

3 a+1
- ( 2) > M,

since we can choose « as large as we want.
(o) This function is obviously almost identical to the function f defined
above.

(473) The answer is NO. It is enough to choose for example a = 4, b = 6 and
c=T.

(474) (a) It is clear that we must examine the different ways of writing 9 as a
product of integers > 2. The only possible choices are 9 and 3 - 3, so that
n =28 or n =2%.32% It is clear that n = 36 is the smallest.
(b) Reasoning as above, we obtain n = 2% .3 = 48.
(c) The smallest integer is 144.

(475) Since n > 1, we have that n = ¢7* ---¢?~ and 7(n) = (a1 +1) - - - (a, +1) =
14 = 2-7. Then, either »r = 2 witha; = 1 and as = 6 or r = 1 with a; = 13.
It follows that the positive numbers with exactly 14 divisors are of two
kinds: the numbers pq®, where p and q are distinct prime numbers, and
the numbers p'3, where p is an arbitrary prime number.

(476) (a) Since 20! =218.38.5%.72.11.13-17- 19, we find

7(20!) =2%.3%.5.19,

and this is why the largest prime number dividing 7(20!) is 19.
(b) Similarly, we find

o(20) = (22 —1)(3% —1)(5° —1)-23-3%*.5-7-19.

Since 219 — 1 is a Mersenne prime larger than all the other prime factors,
we conclude that 2! — 1 is the largest prime number dividing o (20!).
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(c) 3.

(d) 61.

(Problem A-1 of Putnam, 1983). Let 7(m) be the number of divisors of
m. Then the number of positive integers n such that n|a or n|b is equal
to

7(a) + 7(b) — 7((a, b)).
On the other hand, since the function 7 is multiplicative and since 7(p") =

r + 1 for each prime number p and each integer » > 1, the number of
required positive integers n is

7(10%) + 7(20%) — 7(2%0 - 5°°) = 7(2* - 5%) + 7(2%° . 5°)
—7(2%9.5%0) = 412 4 61 - 31 — 41 - 31 = 2301.
Expanding the right-hand side, we obtain

/1 1 =1 1 1
_ . _ (14 = 4.,
Z(Qn 1_1/271) ZQn( +2n+22n+ )
n=1 n=1 n=1
= 2(2— oo ﬁ+"'>zzz2dld2
n=1 d2:1d121
=1 > 7(m)
= D = =3 :
m=1 2 dide=m m=1 2m

REMARK: The value of the series is 1.6006695152... , a number which
Paul Erdés [10] has proved to be irrational.

Part (i) can easily be obtained using induction. To prove part (ii), we first
observe that for each integer k > 2,

1 1 1

() be  biby---bg_1 biby-- by’
an equality that follows from the fact that
1 1 1 1 1 1
be | bp—1 (bkl _E> " biby - be_1 br(bp —1)
B 1 I 1 1
B b1b2"'bk—1ibi—bk—b1b2"'bk—1_bk+1—1
1 1

biby---bx_1  biby-- by

where we have used (i) and the definition of the sequence (by).
Now using (%), we obtain that for each integer k > 4,

S W S S U 1 1
Tt T T §+<§_ﬁ>+<ﬁ_2-3-7>
1 1
+<2'3-7_2.3~7-43>
. 1 1 )
T +<b1b2-~bk_1 bibybi )

—

1 1

572 biby b
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and the result (ii) follows by letting k tend to +oo.
To obtain the last relation, we write, using (ii),

w5552 -2 {5
as required.

j=1 j=1

REMARK: The reader interested by this sequence will appreciate the re-
cent papers of J.W. Sander and G. Myerson; see in particular J.W. Sander
[34].

Let (m,n) = 1. If m and n are odd, then, since 7 is multiplicative,

n—1 n—1
b b,

71(mn) = 7(mn) = 7(m)7(n) = 11(Mm)11(n),

and the result is proved in this case. On the other hand, if one of these
two integers is even, say m, then there exists a positive integer a such
that m = 2%r, with r odd (and (r,n) = 1). We then have

71(mn) = 11 (rn) = 7(rn) = 7(r)7(n) = 11 (2%) 711 (n) = 71 (M) 11 (N).

All cases are thus covered, and the result is proved.
For each prime number p, we cannot have both p|a and p|b, and therefore
either a contains the largest power of p which divides n or it does not
contain any factor of n. This leaves two choices for each prime factor p,
and we therefore have a total of 2¢("™) choices.
Let f(n) = #{(a,b) | a > 1,b > 1 and [a,b] = n}. It is immediate that
f is a multiplicative function. Indeed, assume that (m,n) = 1 and that
[a,b] = mn. Then, a can be written in a unique way as a = ajaz, with
ai|m and ag|n. Similarly, b = b1by, with b1|m and be|n. In this case,
[a1,b1] = m and [ag, be] = n. We therefore only need to consider n = p”,
in which case we have a = p%, b = p?, with r = max{a, 8}. If r = @, then
B=0,1,...,7 (r+1 possibilities), or else r = f and « = 0,1,...,7r =1 (r
possibilities). We therefore have a total of 2r + 1 possibilities, and this is
why 2r + 1 = 7(p*") = 7(n?), as was to be shown.
If (a,b) = d and ab = n, we set A = a/d and B = b/d. The integers A
and B are relatively prime and satisfy AB = n/d%. Conversely, if there
exist relatively prime integers A and B such that AB = n/d?, then setting
a = dA and b = dB, we find that (a,b) = d and ab = n. We only need
to find the number of ordered pairs (A, B) such that (A,B) = 1 and
AB = n/d?. In light of Problem 481, the number of such pairs is 2¢(n/4").
Finally, since 2¢(/ @) stands for the number of ordered pairs a, b such
that (a,b) = d and ab = n, then summing over all the d’s such that d?|n,
we obtain the total number of ordered pairs a, b such that ab = n, that is
the number of divisors of n.
By hypothesis, we have n = 2%*m, with m odd. Then,

(1) 7(2n) = 7(2°Tm) = 71(2°T) 1 (m) = (a + 2)7(m).
On the other hand,
(2) 7(n) = 7(2%m) = 7(2%)7(m) = (a + 1)7(m).



(485)

(486)

(487)

(488)

(489)

SOLUTIONS 209

Combining (1) and (2), we obtain

T(2n) a+2
T(n)  a+1

Let n =[];_; ¢*; then 7(n) = [];_, (a; + 1), in which case it is clear that
7(n) is odd if and only if a; is even. Hence, we only need to show that
each a; is even if and only if n is a perfect square. It is immediate that
if each a; is even, then n is a perfect square. Conversely, if n is a perfect
square, then n = m?, m € N. If m = []|_, ¢*, we therefore obtain that
n=[I_, qizei, and the uniqueness of the canonical representation of n
then implies that a; = 2e; fori=1,2,...,7r.

Let n =[];_; ¢ (with ¢1 < g2 < ... < g, primes, a1, s, ..., positive
integers) be a number such that o(n) is prime. Using the formula

i=1 g

given in Theorem 31, it is clear that we must have n = ¢* for a certain
prime number ¢ and a certain positive integer «, in which case 7(n) =
7(¢*) = a + 1. Therefore we only need to prove that a + 1 is a prime
number. Now, if it is not the case, that isifa+1=abwith2 <a <b<
a+ 1, we will have

a+1 ab a
— fo _q _l_q —1_(1 _1

.(qa(b—l) + qa(b—Q) R 1),

that is the product of two integers > 2, which contradicts the fact that

o(n) is prime. Thus, the result follows.

If n = gy*--- ¢, then o(n) = H(1+qi+~-'+qfi). If ¢; = 2, then
i=1

Qi=1+¢+---+¢ isodd. If g; is an odd prime number, then Q; is
odd if and only if there exists an odd number of terms in ;. Hence, in
order to have Q; odd, a; must be even. Since o(n) is odd if and only if
each Q; is odd, it follows that n must be the product of 2¢ (k > 0) and
of a perfect square.

If d runs through the set of divisors of n, then n/d does also. Therefore,
we have

2

[¢) ~Ila- I1%=Tln =

dn d|n d|n d|n

thus the result. When 7(n) is an odd number, the formula still holds

because, as we have shown in Problem 485, n is then a perfect square.

We have proved in Problem 488 that Hd =n7(™/2 Therefore, calling
d|n

upon the inequality comparing the geometric mean and the arithmetic
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mean (see Theorem 5), we obtain
1/7(n) )
1 ggin
= d2 <\ =2
=1l < T
d|n d|n
and the result follows.
The minimal value is 6. To prove this, consider separately the cases “n
prime” and “n composite”. If n is prime and larger than 2, then n + 1 is
composite, in which case 7(n + 1) > 3. It follows that
T{nn+1)=7(n)-1(n+1)=2-7(n+1) >2-3 =6.
On the other hand, if n is not prime and larger than 2, then 7(n) > 3, so
that
T(n(n+1))=7n)-7(n+1)>3-7(n+1)>3-2=6.
We have thus established that 7(n(n+1)) > 6, for all n > 3. The minimum
is therefore attained when n = 3, since in this case 7(n(n+1)) =2-3 = 6.
We have proved in ‘Problem 488 that Hd =n"{"/2 Defining m and o

d|n
by n = 2%m, with m odd, the relation
(1) fr(n) =m7(M/2
is immediate. To establish the relation
T(m)/2
(2) falm) = (23 Dme) T — amyertmr2,

we first observe that fa(n)- fi(n) = n™(M/2 so that fo(n) = n™(™/2/ fi(n).
Substituting (1) in this last equation, we easily obtain (2).
(MMAG, Vol. 48, 1975, p. 185). This is equivalent to showing that

z”: (Q[n/m] - T(m)> logm = 0.

m=1

But this follows from

2[n/m]logm Z[n/z] logi+2[n/j] log j

m=1 =1 j=1
n [n/i] n [n/4]

= Zlogz’Zl-l—Zlogj Z 1
i=1 j=1 j i=1

1

- Z Z(logz’—{—logj): Zlongl
m=1 dlm

m=1ij=m

n
= Z 7(m) log m.
m=1
To each divisor d < y/n we can associate the divisor n/d, which is therefore
> /n. Since these two categories of divisors end up covering all the
divisors of n, it is clear that 7(n) < 2[y/n]. If n is a perfect square, then
v/n is a divisor of n and the quantity n//n does not introduce any new
divisor of n; this is why in this case we have 7(n) < 2[y/n] —1 < 2y/n. On
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the other hand, if n is not a perfect square, then 4/n is not an integer, so
that [\/n] < /n and therefore 7(n) < 2[y/n] < 2y/n. Hence, in all cases,
we have

7(n) < 2v/n.

Finally, for n > 5, we have 2y/n < n, which implies that 7(n) < n. Since
7(3) =2 < 3 and 7(4) = 3 < 4, we have that

T(n) <n (n>3).
It follows that the sequence

n, 7(n), 7(t(n)), 7(r(7(n))),...

is strictly decreasing as long as its terms are larger than 2. On the other
hand, it is clear that the number 1 does not show up in any sequence,
except of course in the constant sequence 1,1,1,.... It is therefore easy
to see that each sequence decreases until it reaches the number 2, after
which the number 2 repeats itself indefinitely. We know that 7(n) = 2
if and only if n is prime. Therefore, the sequences whose first element is
a prime number p do not generate any perfect square, since they are as
follows:
P,2,2,2,2,2,... .

In fact, these are the only sequences which do no generate any perfect
square. Indeed, let us examine such a sequence starting with the first
prime number “2” appearing in the sequence. This prime number “2”
will necessarily be preceded by a prime number p. But this prime p must
itself be preceded by a perfect square, since as we proved in Problem
485, 7(n) is odd if and only if n is a perfect square. This is why the
only sequence which does not produce any perfect square is the one which
starts with a prime number.

Since f(n) = n® is a multiplicative function, we easily establish the for-
mula by finding the value of o,(p®) for each p®||n.

(AMM, Vol. 80, 1973, p. 948). Since

O_(pa):1+p+...+pazl (modp),

then (p®, o(p?)) = 1 and hence if p®|a(p®)c(q®), we obtain p¢|a(g®). But

¢’ -1

q—1

and since ¢® < p?, it follows that 1 < o(q®) < 2p?. Hence, p®|c(¢®) implies
that o(qb) = p*.

Let (m,n) = 1. If m and n are odd, then, since ¢ is multiplicative,

o(@®)=14+qg+ - +¢" 1 +¢" = +¢" < 2¢°

o*(mn) = o(mn) = c(m)a(n) = ac*(m)o*(n),

and the result is proved in this particular case. On the other hand, if one
of these two integers is even, say m, then there exists a positive integer «
such that m = 2%, with r odd (and (r,n) = 1). We then have

c*(mn) = o*(rn) = o(rn) = o(r)o(n) = " (2% )c*(n) = o™ (m)o*(n).

All cases having been covered, the result is proved.
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We first show that, for each integer n > 1, we have 3|o(3n — 1). Let
N =3n—1. If N was a a perfect square, ir would be of the form N = 3n
or N =3n+1. Hence, N is not a perfect square, so that by Problem 485,
the number r of divisors is even. Letting dy < dy < ... < d, be the
divisors of N, we get

oo X
dr/2 dl.

0’(N)=d1+d2+"'+dr/2+

It is clear that in order to prove that 3|o(N), it is enough to show that
di*% is divisible by 3, for i = 1,2,...,7/2. First of all, in the case d = 1,
we have

d+%=1+N=1+(3n—1)=3n,
a multiple of 3. If d|n and d > 1, then d = 3k + a for certain integers k

and a, while = 3¢ + b for certain integers £ and b. Of course,

N
d-— =N
d b
and this is why
Bk +a)(30+b) =3n -1,

which means that ab = —1 (mod 3). But this can occur only if one of the
integers a or b is congruent to 1 modulo 3 and the other to —1 modulo 3,
so that in all cases,

a+b=0 (mod 3).
But then
N
d+E=3k+a+3£+bzo (mod 3),

as required.

To prove that 4|c(4n—1) for each integer n > 1, we proceed essentially
in the same manner, but this time by working with congruences modulo
4.

By the same method, we easily prove that 12|o(12n — 1) for each
integer n > 1.

Since o(p”) = (p"t! —1)/(p — 1), then o(p®)|o(p®) if and only if (p®+! —
1)|(p**! — 1), and this is true if and only if (a + 1)|(b + 1), by way of
Problem 75.

We easily establish that

g_g(n) = Zd_“ =n"° Z (%)a =n"7 Zd“ =n"%0,(n).
din d|n d|n

For the second part, it is enough to set a = 1 in the result of the first part.

If 2¥ — 1 is a prime number, then n = 25¥=1(2F — 1) satisfies o(n) = 2n.
For the second part, assume that n is an even perfect number; that is

assume that n = 2tm, where m is an odd number and ¢ > 0. Then,

2n = o(n) = (2o (m) = (21 — 1)a(m),
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in which case
(%) 2 m = (24 — Do (m).

It follows that (2!*1 — 1)|2¢*1m, and since (2!*! — 1,2t*1) = 1, then
2t+1 — 1|m; that is m = (2! — 1)M for a certain positive integer M.
Replacing this value of m in (), we obtain o(m) = 271 M; and since m
and M (M < m) are divisors of m, then

2 M =o(m) >m+ M =2"""M.

Therefore, o(m) = m+ M. But this equality implies that m has only the
divisors m and M, which in turn implies that m is prime and M = 1.
REMARK: In Euclid’s Elements, the result follows from the fact that if
2k — 1 is prime, then the number 25¥~1(2F — 1) is a perfect number. In the
eighteenth century, Euler proved that if n is an even perfect number, then
there exists a prime number of the form 2% —1 such that n = 2F~1(2% —1).
The answer is YES. Indeed, we know that if n is a even perfect number,
then n = 2971(27 — 1), with 27 — 1 prime, in which case

1 1 1 1
S.—Z}—)—§+2q_1>‘2—

pln
and
11 11 1 1 5 7r
= — — < = —" _ = = —
S=oto1S3tmE_1-3t3=§ <2ley

since 2log 7 ~ 0.903.
Since n is an even perfect number, it follows that n = 2¥=1(2%¥ — 1) for a
certain integer k > 2, in which case 8n+1 = 22k+2_2k+2 41 — (2k+1_1)2,
If p® is a perfect number, then we must have

o) =1+p+p°+-- +p* = 2"

This is equivalent to

l+p+p°+-+p* ' = =p%

that is to
pa (p - 2) = _1a
which is impossible.
Each even perfect number n is of the form 2P~1(2P — 1), where 2P — 1 is a
prime number and p a prime number. If p = 2, then n = 6. Assume that

p > 2. But each prime number > 2 is of the form 4m +1or4dm +3. If p
is of the form 4m + 1, then

n =224+ _1)=16m(2-16™ — 1), where m > 1.

Since 16™ ends with the digit 6, we have that 2 - 16™ — 1 ends with the
digit 1, and the number n ends with a 6.

In the same manner, if p = 4m + 3, then
n=24m+2(24m+3 _ 1) =4.16™(8-16™ — 1), where m > 0.

Since 16™ ends with a 6, it follows that 4 - 16™ ends with a 4; moreover,
8 -16™ — 1 ends with a 7, and this is why n ends with the digit 8.
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If n > 6 is an even perfect number, then, by Problem 500, there exists a
positive integer a such that

n=2%(2*""—1),  with 2**! — 1 prime.

Since 29*! — 1 is prime, it is clear that o + 1 is odd, in which case there
exists a positive integer § such that o = 23. We therefore have

n=2%(20%1 — 1) = 220 (2291 — 1) = (2°)? (2. (2°)® — 1) = K2(2k*-1).

The result then follows from Problem 22.
First of all, if n = p® for p > 3 prime and a > 1 an integer, then

on)=14+p+---+p% <2p® =2n,

which contradicts the fact that n is perfect.
Hence, we only need to prove that n cannot be written as

n = p*q°,

for certain prime numbers 3 < p < ¢ and positive integers a and (.
But, if such a representation of n was possible, we would have

o) = o(@)o(@”)=A+p+-+p)(1+g+ - +4")

1 1 1 1
= p° <1+_+...+_a)qﬁ<1+_+...+_ﬁ)
p p q q

< 2p%¢° = 2n,

since
R S ) - !
p p™ q ?) 1-5 1-4
1 1 15
=—<2
= 1 1 )
1-11-1"8

again a contradiction.
(AMM, Vol. 82, 1975, p. 1015). The only positive integer with this prop-
erty is 6. To prove this result, we consider separately two cases.

First case. If n is an even perfect number, then n = 2P~1(2P — 1)
where 2P — 1 and p are prime. Since o is a multiplicative function, it
follows that

a(a(n)) = a(2P(2P — 1)) = g(2P)o (2P — 1) = (2PT! —1)27,
an even number. If this number is also perfect, then 2P — 1 and p+ 1

are prime, which is possible only if p = 2 and n = 6.
Second case. If n is an odd perfect number, then o(n) = 2n implies

o(o(n)) =o(2n) = o(2)o(n) = 6n.

If this last number is perfect, then, since it is even, it can be written as
6n = 2P~1(2P — 1) with 2P — 1 prime, which can occur only if n = 1, which
is not perfect.

Therefore, there is only one solution, namely n = 6.
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Assume that n is odd and tri-perfect. Then, n = ¢f* ---¢% with each
prime number g; > 3 and

M) o =(+a+g++¢") - (I+e+a+ +q).

For o(n) = 3n to be verified, o(n) must be odd, and therefore each factor
1+¢; +q?+ -+ ¢ on the right of (1) is odd, which implies that each
a; must be even, meaning that n must be a perfect square.

First of all, it is clear that if n is of the form 2%, then n is not tri-perfect.
Assume that n = 2%¢; - - - g, for a certain positive integer r, each ¢; being
an odd prime number. The equation

(1) o{n) =3n
can be written as
(2a+1_1)(q1+1)...(qr+1) :3-2a.q1...qr_

Each number ¢; + 1 being even, we must necessarily have r < a.

If @ = 1, we have r = 1, and therefore (1) can be written as 3(¢1 +1) =
3-2-¢qq, in which case ¢ = 1, which is nonsense.

If o = 2, we have r < 2, and therefore (1) can be written as 7(¢1 +1) =
12¢; in the case r = 1 and 7(¢1 + 1)(g2 + 1) = 12¢1¢2 in the case r = 2.
The first case is reduced to 5g; = 7, which makes no sense. The equation
for the second case is impossible since the two ¢;’s are > 3.

If o = 3, we have r < 3, and therefore (1) can be written as

(2) 3.5 [[@+1)=3-2° ][

which means that one of the ¢;’s is 5, say ¢1 = 5, in which case g1 +1 = 6,
so that (2) becomes

2:3 [Jl@+1)=2° ] a
i>1 i>1
which means that one of the g¢;’s is 3, say go = 3, in which case g2 +1 = 4,
which completes the process in the sense that r = 2 serves our purpose.
We have thus obtained as a solution of (1): n =233 .5 = 120.
If o = 4, we have r < 4, and therefore (1) can be written as

(3) 31-JJ(@:+1) =3-2* -]

which means that one of the ¢;’s is 31, say ¢; = 31, in which case ¢; +1 =
32 = 2%, which makes no sense since the largest power of 2 on the right of
(3) is 2%. Therefore, we have no solutions in the case a = 4.

If o = 5, we have r < 5, and therefore (1) can be written as

(4) 79 [+ =32 ]

which means that one of the ¢;’s is 3 and the other 7, say ¢1 = 3 and
g2 = 7, in which case g1 +1 = 4 and ¢ + 1 = &, so that the equation
(4) is complete in the sense that r = 2 serves our purpose. We have thus
obtained as a solution of (1): n=2%.3.7 = 672.

If o = 6, we have r < 6, and therefore (1) can be written as

(5) 127-[[la+1) =3-2°-T]
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which means that one of the g¢;’s is 127, say ¢ = 127, in which case
q1 + 1 = 128 = 27, which makes no sense since the largest power of 2 on
the right of (5) is 26. Hence, there are no solutions in the case a = 6.

If « = 7, we have r < 7, and therefore (1) can be written as

(6) 3-5-17-[(a+1)=3-2"- ][ &

which means that three of the ¢;’s are 3, 5 and 17, say ¢; = 3, g2 = 5 and
g3 = 17, in which case ¢; +1 =4, g +1 =6 and g3 + 1 = 18 = 2 - 32,
which makes no sense since the largest power of 3 on the right of (6) (after
simplification) is 3. Hence, there are no solutions in the case a = 7.

If & = 8, we have r < 8, and therefore (1) can be written as

(7) 773 [[(a+1)=3-2°-[] &

which means that two of the ¢;’s are 7 and 73, say ¢; = 7 and g2 = 73,
in which case ¢g; + 1 = 8 and g2 + 1 = 74, so that equation (7) becomes
(after simplification)

8-74-[[(a+1) =32 [
i>3 i>3
that is
(8) 37-[[(a+1) =3-2 ] a
i>3 i>3

which means that one of the ¢;’s is 37, say g3 = 37, in which case g3+ 1 =
38 = 219, which means that (8) becomes

9 2:19-[J(a+1) =32 ],
i>4 i>4

which means that one of the ¢;’s is 19, say q4 = 19, in which case g4 +1 =
20 = 22 . 5, which means that (9) becomes

(10) 225 [[(@+1)=3-2°-]] &
i>5 i>5
which leads to g5 = 5, so that g5 + 1 = 6, which reduces (10) to
2256 [[(a+1)=3-2°5-T]a
i>6 i>6

But the only possibility is 7 = 6, hence the solution n = 28.5-7-19-37-73 =
459 818 240.

Continuing this method, the case a = 9 yields the solution n = 2%-3-
11 - 31 = 523776, while the case a = 10 yields no solutions at all.
REMARK: There are reasons to believe (see R.K. Guy [16], p. 48) that
there exist only 6 tri-perfect numbers, the other two being

1476304896 = 213 .3.11-43-127,

51001180160 =2 .5.7-19.31-151.
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(AMM, Vol. 98, 1986, p. 813).

(a) Let d = (a,b), so that o(d) < 2d — 1. Let a = da, b = dB, with
(a, 8) = 1. From Dirichlet’s Theorem, there exist infinitely many prime
numbers of the form a + @m. For each prime number p > 2d of this
form, let n = dp and let = be defined by n = a + bx. We then have
n=dp=a+bxr =a (modb). It follows that

o(n) _ o(dp) o(d) a(p) < 2d—1 p+1
2n  2p  2d p ~ 2 P
1 1 1 1
= (72a) (43) < (- 3) (4.2)
1
= 1—E<1,

and therefore that n is deficient.

(b) Let ¢1,4qo,... be the prime numbers > b. Since the sum of the
reciprocals of the prime numbers diverges, there exists an integer k such
that 1/g1 +1/q2 + -+ + 1/gr > 1. Given positive integers a1, asg,. .., ak,
one can solve the congruence

n=a+br=0 (mod g ---g*).
For such an integer n, we obtain
k
1 1 1 1
oln) <1+—) <1+—)--.(1+—> >1+y —>2
n q1 q2 qk = q5

It follows that n is abundant.
Since n is an even perfect number, there exists a positive integer k such
that

(*) n=2"1(2F-1)=2".p,
where p = 2% — 1 is prime. Then,
7(n) = 7(2F" )7 (p) = 2k.

On the other hand, taking the logarithm in basis 2 on both sides of the
first equation of (%), we obtain successively

logon = (k—1)log, 2+ log,(2F — 1)
1
k
1
= k—1+klog22+log2<1—ﬁ>

1
= 2k—1+log, (1—?> =2k — 1+ ag,

where it is easy to see that the expression oy satisfies —1 < ay < 0. But
since 7(n) = 2k, this last equation can be written as

T(n) =logon+1— ag.
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Since 0 < —ay < 1, we may therefore write
logom+14+0<7(n) <logyn+1+1,

that is
logon+1 < 7(n) <logyn+2,

which means of course that
7(n) = [logyn + 2] = [logyn] + 2.

A given number n has r digits if and only if 10"~ < n < 107, so that
(r — 1) <logygn < r, which means that

(%) r = [logon) + 1,

where [z] stands for the largest integer not exceeding z, is the required
general formula. It then follows from (%) that the number r of digits of
the Spence prime number is given by r = [log10 (22976221 - 1)] + 1. But
obviously

895931.4 < log,, 229722 < log,, (229707 - 1)
< log;( 22976221 < 895931.5,

so that r = 895932, allowing us to conclude that the Spence number has

exactly 895932 digits.

REMARK: The reader is invited to consult the Web site www.mersenne.org

to obtain the most recent results concerning Mersenne primes.

Consider the sequence {(o(n!)/n!)}, n =1,2,..., for which it is clear that
O'(Tl') >.1_+1+1+...+1

nl —1 2 3 n’

The result then follows from the divergence of the harmonic series Y oo | 1.

Assume that n is an even perfect number. Then n = 25~1(2F — 1) for

a certain positive integer k. Since each triangular number is of the form

m(m 4 1)/2, it is enough to choose m = 2¥ — 1 in order to obtain the

result.

(AMM, Vol. 94, 1987, p. 794). We proceed by induction. Let m =

q7'q3? - qi* be a perfect number such that g1 < g2 < ... < qg, k > 2,

and assume that ¢; > k+ 1, in which case ¢; > k+i for each ¢, 2 < ¢ < k.

We then have

o(m) 1 1 1 1
— = 1+ —+---+ aT | 1+—+"'+Tk
m Q1 a4 K ay,
oo o0
1 1 1
< () (X))
im0 &1 iz Ik j=1 q
k k .
1 kE+3j 2k
< 14— | = — = —=2.
j=l<+kz+j—1> Ek+j—1 k

But the inequality o(m)/m < 2 contradicts the fact that m is a perfect
number. Therefore, the hypothesis to the effect that “g; > k + 1” must
be false, and this is why ¢q; < k, as required.
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(AMM, Vol. 75, 1969, p. 1149). This double inequality follows from a
more general result, namely: If n = Hle qi" is an arbitrary integer,
then

0(q1qz~-qk)<a(n)< Q142+ - Gk
Qg2 - qx ~ n é(q192 - k)

Indeed, since

1+q; 1 11 1 1
__%:1+—§1+—+—2+---+qai <1+ =
: ‘ P

q'L q'L ql qq, ql
_ &
1—% P(a:)’
we obtain
oa)  ola)
4 q; #(q:)

The fact that both o and ¢ are multiplicative finally yields the result.
When n is a perfect number, we have o(n) = 2n, and the result follows.
Since n is an even perfect number, there exists a positive integer k such
that n = 2¥=1(2% — 1), with 2¥ — 1 prime. We then have

¢(n) =n][ (1—%) =2F1(2% —1) (1— %) (1—2k—1_1>

— 2k—1(2k—1 _ 1)7

as required.
The answer is YES. It is enough to consider the sequence of integers
n=11% k=1,2,.... Indeed, we have

1 10
=o(11"=11%[1- =) =11F. = =10 1151
d(n) = ¢(11%) =1 ( 11) 11¥ 2 =10-11

The required number is 600 — $(600) = 440. In the second case, the
required number is 2¢(600) = 320.

The required number is 7¢(600) = 1120.

For each i = 0,1,...,k— 1, set E; = {n | im < n < (i + 1)m}. Then,
all the positive integers < mk belong to E = U*_}E;. If (n,m) = 1 and
n € E;, then (n —im,m) = (n,m) = 1 and 0 < n —im < m, so that
n —im € Ey. The association n < n — im shows that the number of
integers in F; which are relatively prime with m is equal to the number of
those which are in Fy, that is ¢(m). Since each E; contains ¢(m) elements
which are relatively prime with m, we have a total of k¢(m) integers, as
was to be shown.
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We observe that each prime divisor of mn is either a prime divisor of m
or of n, or else a prime divisor which divides both m and n. This is why

. L Ie-HIe-5)
mn H(1_5>= I (1_1)

plmn

(¢(m)/m) - ($(n)/n)
(¢(d)/d) ’
which gives after simplification the required equation.
If n = 27, then, since n > 2, we have r > 2. Therefore, ¢(n) = 2"~! is an
even number. If n has at least an odd prime factor, then

o) =n ][ 2= = =TI~ 1).

p
pln H”l" pln

p is an integer and since len(p —1) is an even number, the

Since n/ [,
result follows.

Since 1 < a < b and (a,b) = 1, the required number of fractions is
#{a|1l<a<b,(a,b) =1},

that is ¢(b).
Since m|n, we have that n = km, 1 < k < n. If k = n, we have that
m =1 and ¢(m)|é(n). Assuming that k < n, we have, using the result of
Problem 522,
d p(k)

1) ¢(n) = ¢(km) = ¢(k)p(m) pTE) dep(m) 5’
where d = (m, k). We shall use induction on n. If n =1, then m = 1 and
we have the result. Assume that the result is true for all integers smaller
than n. But, since ¥ < n and d|k, then ¢(d)|¢(k). Consequently, the
right-hand side of (1) is a multiple of ¢(m), which means that ¢(m)|o(n).

Another possible solution is the following. Let p be an arbitrary prime
number such that p?||m and p®||n. From the definition of the Euler func-
tion, p® contributes to the factor p>~1(p—1) by ¢(m), while p® contributes
to the factor p®~1(p — 1) by ¢(n). Since a < b, the result follows.
(AMM, Vol. 93, 1986, p. 656). The case n = 1 is trivial. Assume that
n > 1 and that n = ¢ - - - gp*. If ¢(n)|n, then n = k- #(n) for an integer
k, so that

a1 gk =k(gi— 1) (gx — 1)

Since (g1 —1) - -- (g —1) is an even number, it is clear that, in order for the

equality to be true, one of the g;’s must be equal to 2. We may therefore
assume that ¢; = 2, in which case

22 gk = (g2 — 1)+ (g — 1).

Since ga,...,qx are odd primes, it follows from the above equality that
n can contain at most one odd prime, say q2. Let g2 — 1 = 2y for some
positive integer y. Then 2¢; = k(2y), which implies that k = ¢ and y = 1.
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Hence, q; — 1 = 2; that is ¢ = 3. Therefore, n = 223%, a > 1, b > 0.
Reciprocally, we easily check that if n = 223°, then ¢(n)|n.

If d|n and k € N, the set of prime numbers p such that p|n coincides with
the set of prime numbers p such that p|nd*. Therefore,

k k 1 k 1 k
#(nd*) = nd Hk (1 p) =nd* [ | (1 p) = d*¢(n),
plnd pln

as was to be shown.

In fact, we show that 5¢(n)|2n if and only if n = 225*. When n = 295°,
it is immediate that 5¢(n)|2n. Conversely, assume that n = 2°5° N where
(N,10) =1and a > 0, b > 0. The relation 5¢(n)|2n implies that ¢(N)|N.
But, since (N,10) = 1, it follows from Problem 526 that N = 3¢, ¢ > 0
and therefore that n = 223°5%, ¢ > 0. The fact that 5¢(n)|2n then implies
that ¢ = 0. The given integers are therefore of the form 2°5%, with a > 0,
b>0.

(a) These are the even integers. Indeed, using Problem 522, if d = (n,2),
d
#(2n) = ¢(n)—,
(2m) = () 35

and therefore ¢(2n) > ¢(n) implies that ¢(d) < d. But this occurs when
d > 2 and therefore when d = 2; that is 2|n.

(b) These are the odd integers, because if d = (2,n), the relation of the
statement implies that d = 1.

(c) Let n = 223°N with a > 0, b > 0 and (6, N) = 1. The relation
#(2n) = ¢(3n) implies that 2%¢(3)|23°¢(2%). It follows that a cannot be
zero, and the equality can therefore be written as 22¢(3%) = 223%. This
implies that b = 0. The required numbers are therefore the even numbers
which are not multiples of 3.

Since p is an odd prime number, it follows that ¢(4dp) = ¢(4)d(p) =
2(p — 1), and since 2p + 1 is a prime number, then

d(4p+2) =4(2(2p+1)) = ¢(2p + 1) = 2p,
and the result follows.
REMARK: Each prime number p such that 2p + 1 is also prime is called
a Sophie Germain prime. The Sophie Germain primes smaller than 100
are 2, 3, 5, 11, 23, 29, 41, 53, 83 and 89. Sophie Germain (1776-1831)
proved that if p is such a number larger than 2, then any solution in
positive integers x,y, z of the famous Fermat equation zP + y? = 2P is
such that p|zyz. Even though we still don’t know how to prove that
there exist infinitely many Sophie Germain primes, there is a heuristic
argument suggesting that the number of such numbers not exceeding a
given number z is approximately cx/ log2 z for some positive constant c
(see R. Guy [16]).
Let r1,...,74(n) be the integers smaller than n which are relatively prime
with n. Since (a,n) =1 if and only if (n — a,n) = 1, we have

$(n) #(n) $(n)

Z Ty = Z(n —r;) =ng(n) — Z Ti
i=1 i=1 i=1

and the result follows.
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Forn > 1, let n = g7* - - - ¢ be its representation as a product of distinct
prime powers. If ¢ = 2, then n has r — 1 odd prime factors. Since
¢(n) contains the factor H (g; — 1), the factor 2 appears r — 1 times and

g:|n
i>2

therefore 2"~1|@(n).
It is clear that if n is of the given form, then ¢(n) = 2" for a certain
positive integer r. So let us consider the reciprocal.

Since ¢ is a multiplicative function, it is enough to consider the num-
bers of the form p*. But

o k)_ P lp-1)=22=p=2 ifk>1,

Using Problem 186, 28 + 1 is a prime number only if 3 = 2%, and the
result follows.

Combining the formula of Theorem 27 and the second formula of Theorem
30, we obtain the following results: (a) 47; (b) 41; (c) 29; (d) 23.

The smallest positive integer divisible by six distinct prime numbers is
2-3-5-7-11-13 = 30030. Hence, every integer < 30030 has at most five
distinct prime factors. Hence, for each integer n € [2,30029], we have

so that
77

n < Eﬁb(”) < 5¢(n).
It follows that for 1 < n < 30030, ¢(n) < n < 5¢(n). Therefore, if
@(n) < 500, we have n < 2500. This means that we only need to search
amongst the numbers 500 < n < 2500. With the help of a computer, we
find that the largest integer n such that ¢(n) < 500 is n = 2310 (for which
we have ¢(n) = ¢(2310) = 480).
The answer is YES. Indeed, since (2,8m + 4) = 2, using Problem 522, we
have

o(8m +4) = ¢(2)p(dm + 2)%2) = 2¢(4m + 2),

thus the result.
We have, using Problem 522,

#(a*n + ab) = ag(an + b) and ¢(abn + a?) = ap(bn + a),

which gives the result.

Let n = ¢f* ---¢%", r < 9 be the representation of n as a product of
distinct prime powers. Since ¢; > p;, for i = 1,2,...,r, we have
T T 9
o(n) 1 1 1 110592 1
— = 1—-=1]> 1—— | > 1——) = > =,
n };[1 Q) g pi) 131 i 676039 7

and the result follows.
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(539) (AMM, Vol. 100, 1993, p. 404). If n has at least two distinct odd prime
factors and if p stands for one of them, then (p — 1)|(¢#(n)/2), and calling
upon Fermat’s Little Theorem, it follows that p|(2#(™)/2 —1). Since

98(n) _ 1 — (2¢(n)/2 _ 1)(2¢(n)/2) +1)

and since these two factors are relatively prime, then pf 20(0/2 1 1. We
then obtain (2¢(™/2 4 1,n) = 1, and it follows that each prime divisor of
20(M)/2 1 1 is relatively prime with n and therefore divides 2" — 1. It
remains to consider the case n = p™. If n = 3™ with m > 2, then 3|¢(n),
and therefore 7 divides 2%(™ — 1 but not n. If n = p™ with p > 3, then
2|¢(n), and therefore 3 divides 2¢(™) — 1 but not n.

(540) (AMM, Vol. 85, 1978, p. 199). If n is prime, then ¢(n) = n — 1 and
o(n)=n+1.

Reciprocally, let n > 2 and assume that ¢(n)|(n — 1) and that (n +
1)|o(n). Since ¢(n) is even, it follows that n must be odd. Let p be an odd
prime number such that p"|n, r > 2. Then p"~!|¢(n) so that p"~1|(n—1),
a contradiction. It follows that n is a product qiqs - - - qx of distinct odd
prime numbers. It then follows that ¢(n) = (g1 —1)---(gx — 1) and that
o(n) = (g1 +1)---(gx + 1), which implies that 2¥|¢(n) and 2*|o(n). If
k > 2, then 4|¢(n), so that 4|(n — 1) and therefore 4 f(n + 1). Since n+1
is even, we have that 2|n + 1 and it follows that 25! ‘ a(n)/(n+1), so

that 2= < o(n)/(n+ 1) < o(n)/n. We derive from this that

(i) 10 2)<(3)

Since this is impossible, we conclude that kK = 1 and therefore that n is
prime.

(541) (AMM, Vol. 73, 1966, p. 1026). Assume that n = 2*m where m is odd.
Then, using the first formula of Theorem 30, we obtain

Z p(n/d) = ZQS “m/d) = ¢(2%) ZQS m/d)

d|n d|m
d odd

$(2) > ¢(d) = mep(2%),

d|m

implying that the quotient which we need to evaluate is

e S on . —mp(2e) _ 20— o(27)
2 oln/d) /; D = g a2
d odd d odd

and the result follows.

(542) (AMM, Vol. 75, 1968, p. 551). Since m > 2, it follows by Bertrand’s
Postulate that there exists a prime number p such that m/2 < p < m.
The given sum runs through the set

{mi| (my,m) =1, 1<i<¢g(m)}
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and can therefore be written as

é(m) 1 d(m) 1 é(m) ¢(m)
S LS I mt /T me
=1 =1 k=1 k=1

But it is clear that p divides the denominator (being one of the my’s) but
cannot divide the numerator (since it divides all the terms except one).
It follows that the denominator cannot divide the numerator.

(543) The answer is YES. Assume that f(m) = f(n) and let us show that m = n.
For each prime divisor p of m, let p?||m and p®||n. We write m = p®M. If
p*||f(m), we obtain that k = a(a+1)7(M)/2. Since 7(m) = (a+1)7(M),
it follows that k = ar(m)/2. Since f(m) = f(n), then k = br(n)/2 and
we have a/b = 7(n)/7(m). Therefore, the ratio a/b is the same for each
prime divisor p of m. Since a/b < 1 implies that m is a proper divisor
of n, then f(m) < f(n). We draw a similar conclusion if a/b > 1. We
therefore conclude that ¢ = b and also that m = n.

(544) (AMM, Vol. 95, 1988, p. 962). Let f(n) be the sum to estimate. We can

write
fn)y=> 2@ 3" 1= "2Dg(n/d).

d|n 1<k<n/d dln
(k,n/d)=1

Since 2¢(™ and ¢(n) are multiplicative functions, the function f is also
multiplicative. We easily obtain that f(p™) = p™(1+41/p) for each positive
integer m, and this is why

fmy=n]] <1+%) .
(545) We have

Sy=3 1+ 3 2=[§]x1+[$;—1] x 2.

n<lz n<c
n even n odd

It follows that

T z+1 T
- — —11 < < -
2 1+2< > )_ S(z) _2+(:E+1),
3z 3z
— 2 < < — .
5 2< S(x) < 5 +1
From this, it easily follows that
N N 2

(546) This is an immediate consequence of the divergence of the series 3 1/p
(see Theorem 16). Indeed, if we consider the sequence n; < ny < ..
defined by ny = p1ps-- Pk, k =1,2,..., then for each k > 1,

=2

pln P<Ppk

an expression that tends to 400 as k — +o0.
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(AMM, Vol. 78, 1971, p. 1140). If f is totally multiplicative, the result is
immediate. Reciprocally, assume that (x) is satisfied. For n = 1, we have
f(1) = 1. Assume that n > 2 and let n = ¢ - - - ¢&~ be the representation
of n as a product of distinct prime powers, and set Qn) = a; + -+ - + ;..
It is enough to show that f(n) = f(1)f(g1)** --- f(g»)*". We proceed by
induction on the value of Q(n). If Q(n) = 1, then n is prime (say n = p),
and the proposition is true because

2f(p) = 1(p)f(p) = F(V)f(p) + f(p) f(1) = 2f(1) f(p)-

Assume that the proposition is true for all n such that Q(n) < k, &k > 1.
Choose n such that Q(n) = k + 1. Then,

() f(n) =2f(V)f () + Y fla)f(b).

ab=n
1<a,b<n

It follows that Q(a) < k and Q(b) < k. The induction hypothesis then
allows us to obtain

T(n)f(n) = 2f(1)f(n) + (7(n) — 2)f(1)* f(@1)** - f(gr)*"-

Since n is not prime, then 7(n) > 2 and we obtain the result, regardless
whether f(1) =0 or f(1) = 1.

Since the three expressions appearing in the chain of inequalities represent
multiplicative functions, it is clear that it is enough to prove that the
inequalities are true when n is a prime power, say n = p®. Therefore, it
is enough to show that

2<a+1<29

which is of course true for each positive integer o > 1.
(AMM, Vol. 62, 1955, p. 348). By definition, n is a perfect number if and
only if o(n) = 2n. Therefore n is a perfect number if and only if

nt(n) nt(n) n7(n) B 7(n)

T Ygnm/d)  o(n) 202

Since an even perfect number n is of the form n = 2P~1(2P — 1), with
p prime and 27 — 1 prime, then 7(n) = (p — 1+ 1)2 = 2p. It fol-
lows that H(n) = p. Hence, if n is an even perfect number, then n =
2H(n)~1(2H(n) _ 1)

It remains to prove the implication

H(n)

n=20M=19HM _1) — p even perfect.

First of all, it is clear that it is enough to prove that 27(™ —1 is prime, since
it will then follow that H(n) is a prime p, in which case n = 2P~1(2P — 1),
that is a perfect number (see Problem 500). We have by hypothesis

(1) H(n) =
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It follows from (1) that H is multiplicative. Thus, since (2H()~1 2H(n) _
1) = 1, we have by hypothesis

H(n)=H (2H<">-1 (27~ 1)) = BETOI T H(E - 1)

T 2H() ( a ) o(2H(M) — 1)

Simplifying this last relation shows that
o(28™ —1) gy, 280

T(2H(M) — 1) 2
Set m = 2H(") — 1. We have thus established that
1
2) % _ % with m odd,
T(m

But this can occur only if m is prime. Indeed, if m is composite, then
7(m) > 3 and we obtain, since the two smallest divisors of m are 1 and
some divisor d > 3,

a(m) < m+ (m/3)(r(m)—2)+1 _ (m/3) +1 L m < ﬂ+l+_nz
T(m) T(m) T(m) 379 3 3
4dm 1 m+1
EREREE

which contradicts (2). It follows that 27(") — 1 is prime, and the result

follows.
(550) (AMM, Vol. 78, 1971, p. 406). Let

F0) =Y p*a), glc)=) f(b) and h(n)=> g(c).
alb ble c|n

It is enough to show that h(n) = 72(n). Since the function y is multi-
plicative, the functions f, g and h are also multiplicative; and since the
function 7 is multiplicative, it is enough to show that the result holds
when n is a prime power, say n = p”. In this case, we have

f@) = Q) +pip) =2 fQ1)=1,

g = FO+Y_f)=1+2r, g(1)=1,
s=1

>
—
S
-

Il

g(1)+> g(p*) =1+ (1+2s)
s=1 s=1

= 1+r+r(r+1)=(7‘+I)2=’r2(pr), h(1) =1.

Combining these relations, we find the result.

(651) (AMM, Vol. 80, 1973, p. 76). Let m and n be positive integers such
that (m,n) = 1, and let 1 < a < m, 1 < b < n. From the Chinese
Remainder Theorem and the properties of f, we have that m|f(a) and
n|f(b) if and only if mn|f(z), where z = z(a, b) is the unique integer such
that £ = a (mod m), x = b (mod n), and 1 < z < mn. It follows that g
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is multiplicative. For d|n, the number of values of f(1),..., f(n) divisible
by d is equal to (n/d)g(d); by the inclusion-exclusion principle, we have

h(n) =n—> (n/p)g(p) + > _(n/pa)g(pqg) -

where the first sum runs over all the prime numbers p such that p|n, the
second runs over all distinct prime pairs {p, ¢} such that pg|n, and so on.

It follows that
=I1(-7)

pln
as required.
(552) First of all, it is clear that the function A is multiplicative, and so is the
function 3, A(d). Therefore, it is enough to check that

" 10 otherwise.

d|p>
But
DM@ =1+ Ap) +AP?) +- -+ AP*) =1 =141 =14+ (=1)7,
d|p=

and this last quantity is equal to 1 if « is even and 0 if « is odd, which
proves our claim.
(553) Since f is multiplicative, we have

ST u@fd) =Ja- o) =a- @) [[a- o)

d|n n pln
| pl o

= - JJa-se)=0.

pln
P#2

(554) (T.M. Apostol [1], p. 48). We may reduce the fractions k/n, k = 1,2,...,n,
by writing k/n = a/d, where d|n, 1 < a < d, (a,d) = 1, a and d being
uniquely determined by the integers k and n. Reciprocally, every fraction
a/d such that d|n, 1 < a < d, (a,d) =1, can be written in the form k/n,
1 < k < n. From this equivalence, we derive the result.

(555) We have

Tl 55 (4

d|n d|n =
(k d)=1

Using Problem 554, we have

>y () - (f) -
n) nm '
d|n = k=1
(k d) 1
Using the Moebius Inversion Formula, we obtain

P = Suar (3).

d|n
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so that
m m_gm o (™\"
%w_gdwﬂ1+z+-%ﬁ).
(556) This follows from Problem 555.
(557) This follows from Problem 555.
(558) This follows from Problem 555.
(559)

559) Taking into account the multiplicative character of f, we obtain the for-
mula

w(n)
o 1 3
o =1 16 >=g(1+5) -3
(560) The answer is YES. Indeed, since o(n) = 3_,, d, the Moebius Inversion

Formula easily yields the result.
(561) Indeed, we have

1 1 n? 1 s o2(n)
dEm gm0
d|n dln d|n

(562) It follows from Problem 1 that

m m 2
>3]

r=1 r=1

so that if n = ¢ - - - g¢* is the representation of n as a product of distinct
prime powers, then

Y (r(d)* = > dr)- i (dk)

din dilgst .. di gy ®
k k
= [I X 7@ =]l +2°+ -+ (e +1)°)
§=1g,1477 j=1
k 2 2
= H(1+2+---+(aj+1)) =|> )
j=1 dln

(563) These results are easily obtained from the relation

d_u@df(d) =10~ f@)
dln pln
proved in the solution of Problem 553.

(564) Since u and ¢ are multiplicative functions, u?/¢ is clearly multiplicative
and therefore 3, p*(d)/¢(d) = F(n) is also multiplicative. But if p is
prime and a € N, we have

[ p* _

p-1 p-1 p=ip-1) 4(p*)
and we easily obtain that F'(n) = n/¢(n).

(565) Since the function F' is multiplicative, it is enough to find the value of
F(p®) for p prime and o € N. Since F(p*) = g(p*) — g(p>~1), the result
then follows immediately.

F(p*) =1+
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(566) Since the function f is multiplicative (see Problem 468), it is enough to
find the value of

F) = > ¢de(r),

[drr] =p<

with p prime and o € N. Since [d,r] = p® implies d = p®, r = p® and
max{a, b} = a, it follows that

f%) =3 ¢0M)e(") + D ¢(0)9 (")

352
— o™ Y o) +o(6™) Y ¢ld) = p*° (1 _ pi)
d|p>~1 d|p>

(567) We have

YA = D Ad =D A@P*) =) logp
al

dln Palls p*|n p*|n
= Zalogpz Zlogp"‘zlognpazlogn.
p|n pn pn

(568) For n = 1, the result is trivial. So let n > 2. Using Problem 567 and the
Moebius Inversion Formula, we then obtain

A(n) = u(d)log(n/d) = logn» _ u(d) — > _ p(d)logd

dln d|n d|n

=— Z u(d)logd.

dln

(569) If n is odd, n/d is odd and therefore (—1)™/¢ = —1, so that the result is
established for n odd.
If n is even, set n = 2*m, where k € N and (m,2) = 1. Let
di,ds,...,d, be the divisors of m. These being clearly all odd numbers,
it follows that

d17d27"'7d‘r)

2d1,2dy, . .., 2d,,
22dy, 2%d,, ..., 2%d,,

2kdy, 2%d,, ..., 2%d,
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represent all the divisors of n. We then have

T

S gd) = S0 (S ) + Y (1 +

din i=1 “d;|n 2d;|n
Y )T )+ Y (—D"“”if(zkdi))
2k=1d;|n 2kd;|n
(Zf(di>+ S et SR - S k)
i=1 “d;|n 2d;|n 2’°—1d-|n 2kd;|n
= (f()+ £+ + £ = £(29) Z > fd
i=1d;|m

=Y DY Y ) 2@ Y Y fd

d|2k i=1d;|m i=1d;|m

and the result follows.
(570) Set n = 2¥m, where k € N and (m,2) = 1. Let di,dy,...,d, be the
divisors of m. These being all clearly odd, it follows that

d17d2a"' d’ra
2dy,2dy, . . ., 2d,,
22d1,22d2,...,2 d,,

2kdy, 28d,, ..., 2kd,

represent all the divisors of n. We then have

r

S = 3 (Z(—n"/%(d» £ 3 (1 g(ad) +

dn i=1 “d;|n 2d;|n
Y0 MR + Z(—l)"/zk%(z’“di))
2k=1d;|n 2kd;|n
(Z + Y pd) o+ Y s ) - Y ¢(2kdi)>
i=1 “di|n 2d;|n 2k=1d;|n 2kd;|n
= () +92) 4+ 62 — 0(29) Y- (X )
i=1 “di|m

Since for each k£ > 1,

D)+ 2+ +o2FH—p(2F) =14+14+2+22+ ..
2872 — 2kt =,

the result follows.
If n is odd, it is easy to see that the given sum is equal to —n.
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(571) Using the Moebius Inversion Formula and the second formula of Theorem
30, we obtain

o) = (@ =n S D —aT (1-3) = 600,

d|n d|n pln

(572) In each case, using the Moebius Inversion Formula, we easily find that

(a)
= ¢(n) H ¢ Mg + 1),

(b) g is the multiplicative functlon verifying

1 ifr=0o0rr=2,

gp) =4 —2 ifr=1,
0 ifr>3.

(573) The first part is trivial. For the second part, using the Moebius Inversion
Formula and the fact that we only need to estimate g(p®), we easily obtain
that g(n) = p*(n)a(n)/¢(n).

(574) These relations are easily obtained by observing that each of these func-
tions is multiplicative and therefore that the given equations only need to
be verified on prime powers.

(575) Since both sides of the relation represent multiplicative functions, it is
enough to prove this relation when n is a prime power, that is when

n = p®. But
L > wd) ( ) u(DAP®) + p@EAE* ) = (=1)* = (-1
dlp>
_ )2 if « is even,
| -2 ifaisodd,
so that
Q00w _ o (_1ye — § 2 if « is even,
) (7= ) _{ -2 if a is odd.

Comparing (1) and (2), the result follows.
(576) Using the function log and then the Moebius Inversion Formula, the result

follows.
(577) Since Hdk = H (%)k, we have
dln dln
| | i
(1) ~mrem ey e
din dn  dn
that is

Hdk — nkf(n)/2'

d|n
Using Problem 576 with f(n) = n¥™(™/2 and g(d) = d*, we obtain the
result.
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(578) The answer is NO. A counter-example is provided by the functions F(n) =
o(n) and f(n) = n. Indeed, it is clear that f is totally multiplicative, while
F is not totally multiplicative.

(579) We first write n as n = m?r, with (m,r) = 1 and r squarefree, in which

case

2
m-r
T 3 und= 3 n (=)
n2(d)=1 uzlg);
d1|m2, dg|r dl d2

12 (dy)=p2(dg)=1

But

m? oy
L o #0, with u(dy) =1<=d; =m,
2

so that u (72—) = p(m). Thus,
1

So=utm) 3 (5 ) =um¥ ()

dg|r d2|r
12 (dg)=1

ifr>1.

= plm) 3 pe) = {g(m) i

e|r

Since in the case r = 1, we have n = m?2, the result follows.
(580) (AMM, Vol. 64, 1957, p. 45). We have

f(d)
f@+itn/d) — TTa/@TT (2 = nZan (@
G [T¢“TI(3) n .
d|n d|n d|n
The relation (x) then follows from the fact that }_,, ¢(d) = n (see The-
orem 30).

(581) (a) We have
(f*xg)(n) =" f(d)g(n/d) = f(n/d)g(d) = (g * f)(n),

d|n d|n
for each positive integer n, as required.
(b) It is enough to show that, for each positive integer n, ((f*g)*h)(n) =
(f*(g*h))(n), a relation which can easily be obtained using the definition
of the Dirichlet product.
(c) For each positive integer n, we have

(f*E)n) = 3" F(Em/d) = f(n),
d|n

since E(n/d) =0 if d < n. Similarly, (E x f)(n) = f(n) for each positive
integer n.

(d) Let f be a given arithmetical function. We will show that the equation
(f * f~Y(n) = E(n) has a unique solution f~!. For n = 1, we must
solve (f = f~1)(1) = E(1), that is f(1)f~%(1) = 1. Since f(1) # 0,
we have f~1(1) = 1/f(1). Assume now that the values of f~!(k) are



(582)

(583)

(584)
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uniquely determined for all ¥ < n. We must then solve the equation

(f * f~1)(n) = E(n), that is
> f(n/d)fHd) =0,

d|n

which can be written as

ff7H 1)+ Y f(n/d)f 7 (d) =0.
d|n
din
If the values f~1(d) are known for all the divisors d < n, then the value
f~Y(n) is uniquely determined by

“1(p) = __1 n -1
I~ = 753 %f( Jd)fH(d),
d<n

since f(1) # 0. This therefore establishes the existence and the uniqueness
of f~! by induction on n.

We proceed by contradiction by assuming that f is not multiplicative and
then by showing that this implies that h := f % g is not multiplicative.
Hence assume that f is not multiplicative; that-is there exists a pair
of positive integers m,n such that (m,n) = 1 and such that f(mn) #
f(m)f(n). We choose a pair m,n in such a way that the product mn is
minimal (amongst all those pairs satisfying this property).

First of all, if mn = 1, it means that f(1) # f(1)f(1) so that f(1) # 1.
But since A{1) = f(1)g(1) = f(1) # 1, it follows that A is not multiplica-
tive, creating a contradiction.

If mn > 1, then we have, by our minimal choice, that f(ab) = f(a)f(b)
for all positive integers a and b such that (a,b) = 1 and ab < mn. We
may therefore write

Rmn) = > flab)g (S5 ) + fmn)g(1)

a|lm, bln
ab<mn

= Y f@i®)9 () g () + fomn)

a|lm, bln
ab<mn

= Y@ (%)X £®)g () = Fm )+ f(mn)
alm b|n

= h(m)h(n) — f(m)f(n) + f(mn).

Since f(mn) # f(m)f(n), this proves that h(mn) # h(m)h(n), thereby
contradicting the fact that A is multiplicative. Thus the result.

Applying the result of Problem 582 by taking ¢ = f~! and observing that
f*g=fxf ! =E is multiplicative, the result follows.

(a) This follows from the fact that

(1 0)(n) =Y p(d) = E(n).
dln
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(585)

(586)
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(b) We have

(br % 10)( g d"=o.(n

(c) We have
(i w)(n) = Y~ Zp(d) = 6(n).
dn

(d) By definition, o(n) =Y djn t1(d). Therefore, using the Moebius Inver-
sion Formula, we obtain

n=1(n Zu o(n/d) = (u*o)(n),

d|n

hence, the required equality.
(e) Using (a), (b) and (c), we have

D*Op = LI KK Lp Ly = L] % Lp % L% Lo = L1 % Ly * B = 17 % 1.
(f) This follows from
(t1*x01)(n) = Z d—nZl— 117)(
dn dln
(g) Since T = 1o * Lo, we have
Fn) =" 7(d) = (1o *T)(n) = (10 * Lo * Lo)(n).
dn

The first part follows from the fact that u * o = E (see Problem 584).

For the general case, we proceed as follows. Since ¢! is a multiplicative

function, we shall estimate ¢~ !(p*), k¥ > 1. Using Problem 581, we have

i) = —ut(1) =-p",
@) = =@ (1) = w(p)e N (p) = 0.

Using induction, one can show that (71 (p*) = 0 if k > 1, that is

—1/ ay __ —pr ifa= ].,
r (p)_{o if > 1.
Hence,

~1(n) = IL,.(=p") if n is squarefree,
" Lo otherwise,

which can be written as
S = pmem) or i = pu.

(i) Since (p * wo)(n) = Xy, u(d) = E(n), it follows that 1yt = p. For
(ii), we have (E x E)(n) = 32, E(n/d)E(d) = E(n), so that E~! =
Finally, for (iii), we obtain |u|~! = A.
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(587) We have successively
(f*9)7'*(f*x9) = E,
(fxg)'xgxf = B,
(fx9) g = [T,
(Fra)™ = freg™h

(588) Since > 4, #(d) = n, we have 19 * ¢ = 1. Hence, ¢ = 11 * u and ¢! =

t7* * tg. Therefore, using Problem 585, we have

“n) = Z g Z,u )d = H (1-
d|n pln
as required.

(589) We first prove the necessity. Assume that f is totally multiplicative and
set g(n) = u( )f(n). We then have

(9% Nin Zu f(n/d) = Zu )E(n) = E(n),

and the result follows.
To prove the sufficiency, we proceed as follows. Since f~!(n) =
p(n) f(n), we have

(%) > uwld)f(d)f(n/d)=0 (n>2).
dln
Hence, if n = p?,

p(1) (1) f(*) + ulp)f(p) f(p) =0,

and this shows that f(p?) = (f(p))?. Using this and again (), we obtain
that f(p®) = (f(p))3, and so on. It follows that f is totally multiplicative.
(590) Since the Liouville function A is totally multiplicative, using Problem 589,
we obtain the result.
(591) Since the function ¢,(n) = n® is totally multiplicative and since o, =
Lg * Ly, we have, using Problems 587 and 589,

-1 -1 -1 -1 -1
Oq :(LG*LO) =g *lg = lg P =lafb ¥,

thus the result.
(592) If m = p® and n = p®*®, then (m,n) = p® and
pa+1 -1 pa+b+1 —1
p—1 p—1

o(m)o(n) =

On the other hand,

Z dg( ) ZPU 2a-+b=2k)

d|(m,n)
2a+b—2k+1 1

a a a
_ kP -1 1 a+b+1 a—k k
B Y i { S —zp}
k=0 k=0 k=0

a+1 __ 1 a+b+1 _ 1
=P P = o(m)o(n).
p—1 p—1
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Ifm=qi" - qp* andn:qi"---q,‘z’“,then

k a; b;
a(m)a(n) = H o(ql H Z d;o (qidgz )
i=1 =1 d; \(ql ,q11)

Z do(mn/d?).

d|(m,n)

(593) (McCarthy [23]) It is enough to show that (a) = (c¢) = (a) = (b) = (a).
We shall prove each of these implications one by one.
(a) = (c) Let p be prime and a € N. Set m = p® and n = p in (1).
The result gives

F@*) = fP)f@*) + f(* 1) F(p).

For a = 1, we obtain F(p) = f(p?) — f?(p), which completes the proof of
this part.

(¢) = (a) Assume that (3) is true. If (mn,m'/n’) = 1, then
((m, n),(m’,n')) = 1 and (mm/,nn') = (m,n)(m',n’). To show that
(1) holds for all m and n, it is enough to show that there exists a multi-
plicative function F' such that for each prime number p and each pair of
positive integers a and b,

min(a,b)

LRI I (V)

We will show that this is the case when F' = pg, where g is the totally
multiplicative function defined by g(p) = f(p?) — f%(p) for each prime
number p.

Without any loss in generality, we may assume that b < a. We proceed
by induction on b. The equation (3) is the one we want to establish when
b= 1. Assume that b > 1 and that the equation is true when b is replaced
by b—1, for alla > b—1. Since F = u g, we have F(p?) = F(p®) =... =0
and therefore

f@F0) = f*THY) = fFe*T F@Y) + F(0*) f(p° %) F(p)
= (f(p)f (") — f(p"‘l)g(p)>f @ = FO™) @ )g(p)

= FE) (F@) ) = £ 29®)) - FE* ) FE*)g(p)
= f") @) + f* ) f (") F(p),

as was to be shown.
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(a) = (b) If (1) is true for all m and n, then

Y f(mn/d*)g(d)

d|(m,n)
> % (") (%) oo

d|(m,n) D|(m/d,n/d)

Yo Y. fm/e)f(n/e)ule/d)ge)
d|(m,n) el(;Te’")

Z f(m/e)f(n/e)g ZM e/d) = )f(n).

e|(m,n) dle
(b) = (a) We have
> fm/d)f(n/d)F(d)= > F(d) > f(mn/d’D*)g(d),
d|(m,n) d|(m,n) D|(m/d,n/d)

and since F' = p g, then

Y fm/d)fn/d)Fd)= Y w(d)g(d) Y f(mn/e*)g(e/d)

d|(m,n) d|(m,n) EI(gll,n)
Z Z f(mn/e?)g Z f(mn/d?)g( Zu
di(mn)  el(myn) el(m,n)
dle
= f(mn).

(594) It is clear that the relation we want to prove is equivalent to o %19 = 11 * 7.
Using Problem 584(b), we then have

Txlg =11 %lg*xlg =11 %T.

(595) The formula we want to prove can be written as ¢ x 7 = . Using Problem
584(b) and (c), we then have

drxT =11 *pu*xtgxtg= (oxp)*(t1 %) =(o*xpu)xoc=Exo=o0.

(596) The formula we want to prove can be written as ¢*o = ¢17. Using Problem
584, we have

dxo=11xpu*xtrxt0= (L1 *t1)*x(uxtg) =t1 %1 *E=11%11 =017,
(597) We must show that ¢; * 0 = ;7 % ¢p. Using Problem 584, we have
L1*0 = L] x L] ¥ Ly = L1T * Lg.
(598) The relation we want to prove is equivalent to 10 * tg = 0 * 2. Since
(o)) =no(n)=nY d=> nd=Y_ gaﬂ = (12 % 11)(n),
dln dln dln

we have
L10 % Ly = Lg % L1 % Ly = Lg * O,

and since ¢ * 19 = o, the result follows.
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(599) The relation we want to prove is equivalent to t,05_, * tg = tg * 0. Since
n\" _
(Lk * LT)(n) = Z (E) dt=n" de "= nrak—T(n) = (Lra'ka)(n)v
d|n d|n
we have
LpOk—p X L0 = Lk % Lp X Lo = L * Op,

and since (t7 * Lo)(n) = 3_ 4, d" = 07(n), the result follows.

(600) Since o = 11 * g, t1 * t1 = ¢17 and since tg * g = 7, it follows that
ox0o = (11 x00) * (b1 %9) = (11 xt1) * (Lo *Lg) = 117 * T,

which is the desired identity.
(601) The relation we need to prove is equivalent to

Op % Op = LpT * T,
Since o, = ¢, * 1o and since ¢, * t,, = -7, we have
Op % 0p = (L % 00) % (L % 1Q) = Lp % Lp x T = LT % T,
which proves the identity.
(602) We must prove that p* 7 = 19. But we have
kT =k (Lgxtg) = (*tg) * g = E * 19 = to.

Another way to obtain this equality is as follows. From the Moebius In-
version Formula, we must show that 7(n) = 3, 1, which happens to be
the definition of the function 7.

(603) In Problem 567, we have seen that >, A(d) = logn. Therefore, using
the Moebius Inversion Formula, we obtain

Zu )log(n/d) = (u * log)(n),

thus the result.
(604) We have

S R2@DAD) = 3 2@Ad) =Y pAd)A

dn d|n dln

d=p
= Y _p(p)logp= Y logp =log[[p =logd(n).
pin pln pln

(605) (Contribution of Imre Kdtai, Budapest). Assume the contrary, that is that
f(n) =C (with C =1o0r C = —1) on I. Then let

N+M N N N+M
K:=1k: L= |2 28
{ k+1 k:_l} and Iy [k k }

If £ € K, then it is clear that Iy N Ix41 contains an interval of length
> 1, which implies that there exists an integer £ € Iy N Ixy;. But, if
m € I, then km € I and therefore f(km) = f(k)f(m) = C; similarly, if
r € Ixy1, then (k+1)r € I and therefore f((k+1)r) = f(k+1)f(r) = C.
Hence, by choosing m = r = ¢, we obtain f(k) = f(k + 1). On the other



(606)

(607)

(608)
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hand, we observe that K contains an interval of the form [L, 2L] such that
2L > +/N. Indeed, it is true that

(*) A

k+1 k

if (N+ M)k — N(k+1) > k(k+1), that is if Mk — N > k* + k; that
is M > ¥ 4k + 1. Therefore if YY —1 < k < /N + 3, then () holds.
So let 2L be the largest even integer < v/N + 3. Then, 2L > VN > nq.
Therefore, f(n) = C on [L,2L]. We then have two possible cases:

(a) The case C' = —1: Since there exists an integer m such that m? €
[L,2L] (see Problem 209), it follows that f(m?) = 1, which, by our
assumption, cannot occur.

(b) The case C = 1: If f(2) = —1, then f(2L) = —f(L) and we are
done. Otherwise, f(2) = 1, and then necessarily one of the elements
no, 219, 22ng, 2310, . . . belongs to the interval [L,2L], an element we
shall denote by 2fng. But, f(2°ng) = f(no) = —1; hence, there
exists an integer n € L,2L] such that f(n) = —1, which contradicts
the assumption f(n) = 1.

(Contribution of Imre Kdtai, Budapest). We easily verify the result for

N =2,3,4. So let N > 5. Then, applying the result of Problem 605 with
M = 3v/N and observing that the conditions of Problem 605 are indeed
fulfilled, we find the result.
Using Theorem 29, we have

(%) YD oud=) Em=1
n<z d|n n<x
But the left-hand side of () is

SN ud) =D > 1= w@[3].

n<z dln d<z n<x d<zx
dln

1

Combining this last relation with (*), we obtain the result.
First of all, we observe that

o (S0 G| 2 oG- [2)

d<z-—1
<) @) <z
d<z—1

On the other hand, since > ;. , u(d)[z/d] = 1 (see Problem 607), we derive
from (*) that

d
mzy%—l <zx-—1.
d<z

Therefore,

p(d) p(d)
— | = — 141 <zxz—-14+1=
w; d a:d;z d + <z + z,
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and the result follows.
(609) (Putnam 1971). It is clear that §(2m+1) = 2m+1 and that §(2m) = §(m).
Therefore, setting

stmy =32,

n=1

we obtain that S(2k + 1) = S(2k) + 1. It follows that

Za(zr Za(zr—l) Ly e m.

o’ 2r = 2r—1 2
Letting
2m
F(m) = S(m) - =,

we have then that

Fem) = S@m) -2~ Loy - ™ = % (S(m) _ Q—m) —Lrm),

3 2 3 3 2
F@m+D=ﬂ%ﬂJ%}@%+D=S@)+1—%L§
=F(2m)+%.

Using induction, one easily shows that
2
0 < F(m) < 3 for each integer m > 1.
We have thus proved that

0<S(m)— <-<1,

2m 2
3 3

and the result follows.

(610) It is enough to observe that since n can be written as n = mr?, with
p2(m) = 1, then d|r <= d?|n.

(611) Using the inclusion-exclusion principle, we obtain

g <on- 3] 5)+3]

Since [y] < y and since —[y] < —y + 1, we then have

N N N 1 1 N
> fn <N————+——|—2—N(l——>(1——)+2:——|—2,
e 36 2 3 3

and the result follows.
(612) The answer is YES. Indeed, first define f as follows:

1 ifp>2andk>1,
f@*) =<1 ifp=2and k>2,
0 fp=2and k=1.



(613)

(614)

(615)

(616)

SOLUTIONS 241

Then, since each positive integer n is either odd, a multiple of 4 or else
congruent to 2 modulo 4, we have

dMofm)y = > )+ >, fm+ D fn)

n<nN n<N n<N n<N
- n=1 (mod 2) n=0 (mod 4) n=2 (mod 4)

[N Lo 3N
T2 4
as N — oo.

We have seen in Problem 610 that
= u(d)
d?|n

We can therefore write successively

AN) = D @A) =) > pd= Y ud

n<N n<N d2|n d2m<N
N
= D_omd) Y 1= wd) |5,
d2<N m< Xy d2<N
and the result follows.
We have

__on) 1 1
o) = e~ L3
pln
Considering the infinite sequence of powers of 2, that is the numbers n of
the form n = 2™ with m € N, we have
1

0<Q(n)=Q(2m)=;;+§1-—>0 (m — 00),

which proves the first statement.
On the other hand, if we consider the sequence of integers n = p,
where p is prime, we have

1-1 1

Q) = Q) = —2 —~5 (- ).

Since, for each integer n > 1, we have Q(n) < %, the result follows.

It is clear that
o0 o0
Yo<Yg
n=1 q n=1 2n

which series converges (to 1).

REMARK: Using a computer, we obtain that ) . ; 1/g, = 0.7404. .. .

It is enough to prove that to each odd divisor d of an integer n, there
corresponds a divisor of 2" + 1 which is larger than 1. We have

d
2"+1:(2"/d) t1=a%41,

say. Therefore, since d is odd, a + 1|a® + 1 = 2" + 1. The number a + 1
is therefore the required divisor.
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(617) Let d|n be such that 1 < d < n; then 1 < n/d < n. If d < /n, then
n/d > \/n. We derive from this that o(n) > n + y/n + 1, and the result
follows. Finally, it follows from this equality that

opn+1)—0(pn) >pn+1+pPn+1=@n+1)=+po+1— +o0,

which proves the second result.

(618) If n is an odd integer, then n can be written as a product of distinct
prime powers p®, that is n = Hp"‘Hn p®, where each prime number p is
odd. Since o is a multiplicative function, we have

o) _ 1 o®) _ 1.t .1
*) n =11 Pe _H<1+p+p2+ +p")'

p|n p||n
But, since each of these p’s satisfies p > 3, we always have

11 1 11 1 1
If ottt SSlbgg ot <ligt

1
= '3"3 3 3t
1

Using this last inequality in (%), we obtain the required inequality corre-
sponding to the case n odd. For the other case, we only need to observe
that besides having () for p odd, we have
1+1+1+ SRS NS "
22 20 2 22 -

which completes the proof of the case n even, that is
w(n)—1
on) _, (§> :
n 2
(619) It is clear that

o(n)=n+ Z d <n+ (r(n) — 1)n = n7r(n).
d|n

(620) It is enough to take n = p prime (larger than 2). We then have o(p) = 1+p
and therefore o(p—1) > 1+2+ (p— 1) = p+ 2, and the result follows.

(621) It is immediate that o(n) > n. Since o(n)/n? is a multiplicative function,
it is enough to study this function when n = p®. In this case,

a(p“)_1+p+p2+~--+p":i(1+l+... 1) L p

p2a - p2a pa
which proves the result.
(622) Using the formula
H d= 2n at(m)/

d|n
d even

proved in Problem 491 and observing that the number of even divisors of
n = 2%m is equal to a7(m), we have, comparing the geometric mean with
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the arithmetic mean (see Theorem 5),

1/at(m)
1 op(n)
Von = d < d=-L
n ]d-_[ ~ ar(m) Z at(m)’
o Byen o ven

and the required inequality is proved.

(623) First of all, it is clear that ¢(n) < n—(7(n)—1) = n+1—7(n), since for each
dln, d > 1, we have (d,n) > 1. It follows that o(n) > n > ¢(n)+7(n) -1
and therefore that o(n) > ¢(n) + 7(n).

(624) This inequality follows from

> f(d)g(n/d) = f(1)g(n) + + Y fd)g(n/d) > f(n)+g(n),
d|n din
1<d<n

while equality is obtained if and only if the last sum is empty, that is when
n is prime.
(625) This follows from Problem 624 and the relation

Y o(d)¢(n/d) = nr(n)

din

proved in Problem 596.
(626) (Schwab and T6th [37]) For each integer n > 1, we have

(f + b)) + (g < B)(m) = > (£(d) + g(d) ) h(n/d)

d|n

= 2h(n Z( ) (n/d) > 2h(n).

d>1

(627) We only need to take f =1, g = p and h(n) = n in Problem 626.

(628) Ifw(n) = 1, it is clear that o(n) > n, and the inequality is proved. Assume
that n = ¢f* - - g2 withr > 2. We then have 1 < q2 < ... < gr—1 < /7,
and this is why

n n n
> — =+/n.

a Q2 -1 Vn

It follows that

a(n) >n+ (r—1)v/n,

and the result follows.
(629) (AMM, Vol. 79, 1972, p. 910). We know that ¢(n) < n — 1 with equality
if and only if n is prime. Then,

¢(n*) +¢((n+1)%) = ng(n) + (n+1)¢(n +1)
< n(n—1)+ (n+1)n=2n%

with equality if and only if n and n + 1 are both primes, that is if and
only if n = 2.
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For the general case, we proceed by induction. The induction argu-
ment follows from

¢ +o((n+ MY = ng(n*) + (n+1)g((n + 1)¥)
(n+1) ($(n*) + ¢((n + 1)¥))
< (n4+1)2n*(n+1)k2 =2n%(n +1)* 1,
(630) (AMM, Vol. 79, 1972, p. 915). Let p; be the i—th prime number, r a
positive integer and n = p; - - - p,.. From Dirichlet’s Theorem, there exists

a positive integer k£ such that ¢ = kn + 1 is a prime number. We have
¢(q) = kn and

A

¢(g—1) = ¢(kn) =kn [[ (1 - 1/p) <an 1-1/p;)

~0ll(13)

Therefore,

¢a) 1
#(g—1) I, (1 _ pi)
But, since [[,(1 — 1/p) diverges to 0, it follows that, letting r tend to
infinity, we have limsup,,_, . #(n)/¢(n — 1) =
For the second part, let k£ be an integer such that ¢ = kn —1 is prime.
Then, ¢(¢) = kn — 2 while

d(g+1) = ¢(kn) —an(l——)<an(1——>.

plkn
We therefore obtain that

¢(g+1) -
1— —
#(g) ~ kn -2 H
Letting r tend to infinity, we find that liminf,, . ¢(n + 1)/¢(n) = 0.

(631) (AMM, Vol. 84, 1977, p. 740). The answer is NO. Let N > 5. From
Bertrand’s Postulate (see Theorem 15), there exists a prime number p

such that
[N+3] <p<2[N+3] 9<N4+L
2 2
Therefore,
¢(p)=p-—1> Nl >¢(N+1) if N is odd,
and

¢(p)=p—1> % > ¢(N) if N is even,

meaning that N does not have the required property.
However, since ¢(1) = ¢(2), ¢(3) = ¢(4) =2 and ¢(n) > 2 for n > 3,
the integers 1,2, 3 and 4 have the required property.
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(632) (AMM, Vol. 80, 1973, p. 436). Let
f(n) = $(n)r*(n)

n2
Then:
(i) We easily obtain that f(1) =1, f(2) =1, f(4) = 9/8 and f(3) =
8/9.
(i2) On the other hand, f(p) = 4(p — 1)/p? < 1 if p is an odd prime
number. Moreover, f(p®*1)/f(p®) =p(a +2)?/(a+ 1)?p? < 9/4p < 1 for
a > 0. Hence, by induction this shows that f(p*) < 1 for each positive
integer a.
(ii3) Tt is clear that f(2%) = (a + 1)2/2%t! < 1 for @ > 3 and that
f(8)=1.
(%v) From (%) and (#4), it is clear that f(4k) = 1 implies that k = 2
where (k,2) = 1. In this last case, f(k) = 1/f(4) = 8/9, so that 3|k. Since
f(3%) < 8/9 for a > 1, then by (), we have f(p®) = 1, so that p = 2, and
since f is multiplicative, the only solution of f(k) =8/9 is k = 3.
This is why the equality holds only when n =1, 2,8, 12.
(633) If p(n) stands for the smallest prime factor of n, then

pln

and since both inequalities are strict if and only if n is not prime, the
result follows.

(634) If p is the smallest prime factor of n, then, since n is composite, p < \/n.
Therefore,

¢<n>Sn(1—1)Sn—¢ﬁ.

p
(635) Using the formula ¢(n) = n][,, (1 - %), we obtain
é(n) 1 1 11
B — —_ — > 1 —_ = = - = .
n 1_|I 1 p) ZI)I 2 Ill 2 2
pln n pln

(636) First of all, it is clear that
2

o) =< Y d| =(on)’,
dn din

which proves the second inequality. On the other hand, using the Cauchy-
Schwarz inequality, we obtain

o?(n) = (Zd 1) < Zdz -212 = o2(n)7(n),

d|n d|n d|n

hence, the first inequality.

(637) We must prove that
(n) 1/7(n)
a(n
—_— >
T(n) — (H d) ’

dn
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(638)

(639)

(640)

(641)

(642)
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which is obtained by comparing the geometric mean and the arithmetic
mean (see Theorem 5), if we take for the a;’s the divisors d of n and
r=7(n).

From Problems 488 and 637, we have

1/7(n)

o(n) 1/7(m)
o™ (174 _ (2 _ i,
T(n) g ( )

as was to be shown.

A second solution is the following.

Since f(n) = o(n)/7(n) is a multiplicative function, it is enough to
prove that the inequality holds for n = p®, which is easily verified since

_14+p+pP+--4p®

>(1-p...-p*)/(et]) — a
o >(1-p---p%) VD

f()

In light of Problem 488, it follows that n™(")/2 = n3 and therefore that
7(n) = 6, thus the result.

To each divisor d of n such that d < y/n corresponds another divisor of
n, that is n/d, which satisfies n/d > /n. Therefore, the set A of divisors
of n can be written as A = B U C, where B is made up of the divisors
d < y/n and C of the corresponding divisors n/d, observing that in the
case n = m? for a certain integer m, the divisor m belongs to both sets.
In any event, it is clear that #A4 < #B + #C < /n + /n = 2y/n, as
required.

Using the fact that 7(n) < 24/n (see Problem 640), we can write succes-
sively

TN TN n
o) = Yd+ Y d+n<%-\/ﬁ+%-§+n
L ymicy
2 2
< _lfﬁi\/;{_% _QZEEZE +n=n+ ZEY(@Z_F n=2n+ v
2 2 2 2 2
But

/A

2n+%ﬁ<n\/ﬁ<:}\/ﬁ>4<:>n>l6.

Finally, for 3 <n < 15, we verify that we also have o(n) < ny/n.

We proved in Problem 488 that Hd = n"("/2 Therefore, using the in-
d|n

equality comparing the geometric mean and the arithmetic mean (see

Theorem 5), we obtain

1/7(n)

s/2 _ s 1 s
ns/? — Hd Sﬂmzﬁ'

d|n
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This allows us to write successively
1
/ Z d’ds > / 7(n)n*/? ds,
% gln —00

1 27 (n)n*/? ‘1
> Y 3
-0 logn |-

d 27(n)v/n
[ SO S A
L+ Z logd — logn

)

and the result follows.

(643) The proof is similar to that of Problem 642, except that this time we
integrate from —oo to +2.

(644) It is clear that the inequality we want to prove is equivalent to

1
(1) ¢n)=n][(1-2) <n-(™-1)
(-;)

Let ¢1 < g2 < ... < g, be the r distinct prime factors of n. Then,

¢n) < m— Y 1- Y 1- Y d—-= >

qi|n qiq;|n qiq;9x|n q1-gr|n
1<i<r 1<i<j<r 1<i<j<k<r

(- ()

which proves (1).
(645) By comparing the arithmetic mean with the geometric mean (see Theorem
5), we obtain

1/w(n)

1\ Ve

Z S
wxe () =0

pin pln
which proves the result.
(646) Writing
w(n) 7
w(n)—1= 1
() ; gi-1

and using the Cauchy-Schwarz inequality, we obtain

w(n) w(n)
(@) -2 <> (@) S ﬁ — (P(n) — p(n))h(n),
i=2 i—p 1t T di-1

yielding the result.
(647) Writing

L=}
i=2 V dl
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and using the Cauchy-Schwarz inequality, we obtain

(n) m(n)
_ < _ —
0?3l i) Y G = (0= DG

thus the result.
(648) If d|n, then 2¢ — 1 is a divisor of 2" — 1 because

" —1=2% 1= (24— 1)(24mD) L 2dm=2) ...y 9d ),

(649) Using ¢(n) =n][,,(1-p —1), we get the result.
(650) Since for n > 1, 7(n) < 2y/n and ¢(n)o(n) < n?, and since ¢(mn) <
m¢(n) (see Problem 649), we have

o (n [%D < ¢(n) [%] < o(m 70 < vy < 2m,

(651) In light of Problem 522, we have for d|n, ¢(n) > ¢(d). We thus obtain

D bn) > ¢d) =mn;

d|n d|n

that is ¢(n)7(n) > n.
A second solution is obtained in the following way.

The inequality is verified for n = 1. Solet n > 2. Since the expressions
¢(n)r(n) and n both represent multiplicative functions, it is enough to
show that ¢(p®)7(p*) > p® for each prime number p and each positive
integer a. We must therefore verify that (p® — p®~1)(a + 1) > p®; that is
1- :—))(a +1) > 1. But, for each prime p and each integer o > 1, we have

(1—;)(a—|—1) (1-%)2:1,

from which the result follows.

(652) The solutions are n = 1 and n = 2. One easily checks that n = 1 is a
solution. Solet n > 1. From the argument used in the solution of Problem
651, we have ¢(n)7(n) = n if and only if (1 — l)(oz—i— 1) =1. Butifp > 3,
we have (1 — —)(a +1) > (1—3)2 = 3. We must therefore have p = 2, in
which case we obtain a = 1. The only solution n > 1 is therefore n = 2.

(653) We have ¢(n) < n — 1, with equality if and only if n is prime. Assume
that m > n. Then, by Problem 649,

p(mn) + ¢((m+1)(n+1)) < me(n)+ (m+1)p(n+1)
< mn—1)+(m+1)n
= 2mn—(m—mn) < 2mn.
We have equality if and only if n» and n + 1 are prime numbers, that is

when n = 2.
(654) (a) This follows from the fact that, if p®||n, then
1 1 1 1
I+ —<l4+—+ S+ F —.
p p p p
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(b) If n is squarefree, it is clear that U(n) = o(n). Assume now that
U(n) = o(n). Then,

1 11 1
1+—>= (1+—+—+--~+—).
pl,_”[n( P pIHIn p p? p°

This means that if n is not squarefree, then at least one of the factors
on the right-hand side is larger than the corresponding factor on the
left-hand side, which leads to a contradiction.

(c) Ifn = 2-3% the result is immediate. Assume now that n is U-perfect,

that is that
HT 1

i=1 %

where ¢; < g2 < ... < g, are the r prime factors of n. First of all, it
is clear that r > 2. Then,

(1) (@1 +1D(g2+1)--- (¢ +1) = 2q1q2 - - g

We must have that ¢; = 2, since otherwise the left-hand side of (1) is
divisible by 2" > 4, while the right-hand side of (1) is divisible only
by 2. Relation (1) therefore becomes

(2) 3g2+1) (g +1) =42 gy

From (2), it follows that 3|gs - - - ¢, = g2 = 3. Hence, (2) becomes

(gs3+1)---(gr+1)=g3-gr,

which is impossible, unless r = 2. Hence the result.
(655) (a) We have

k=1
(f(k),n)=1
Since ¢*(1) = 1, the equation ¢*(mn) = ¢*(m)¢*(n) is verified when
m=1orn=1. Assume that m > 1 and n > 1 are such that (m,n) = 1.
Consider the mn consecutive integers

1 2 (m—1) m
m+1 m+2 m+(m—1) m+m
m=1m+1 n—1m+2 ... (n—1)ym+(m—-1) nm

which constitute a complete residue system modulo mn. Clearly there
are amongst these mn integers exactly ¢*(mn) integers k < mn such
that (f(k),mn) = 1. Each of the rows is a complete residue system
modulo m, and therefore each of these rows has ¢*(m) integers k such
that (f(k),m) = 1. Since {0,1,...,n — 1} is a complete residue system
modulo n, it follows that, for (m,n) = 1, {b,m+b,...,m(n—1)+b} is also
a complete residue system modulo n. Similarly we can argue that each
of the columns contains exactly ¢*(n) integers k such that (f(k),n) = 1.
Consequently, amongst these mn integers, there are exactly ¢*(n)¢*(m)
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integers k < mn such that (f(k), m) = (f(k),n) = 1; that is (f(k),mn) =
1. We may therefore conclude that

¢"(mn) = ¢*(m)¢"(n).
(b) It is enough to find the value of ¢*(p®). Since

28 28
)= >, 1=p—- > 1
k=1 k=1
(f(k),p)=1 f(k)=0 (mod p)
and
e
1= pawlbp,

f(k)EOk_(mod p)
where b, is the number of values of f(1), f(2),..., f(p) divisible by p, the
result follows.
(656) Using the result of Problem 655 with f(k) = k(k + 1), we obtain that the
number of terms in the sequence is given by

06

(657) Using the result of Problem 655, we find that the number of integers with

the stated property is
2
n 1—--].
(-7)

(658) If n is even, this number is clearly 0. Hence assume that n is odd. We use
the result of Problem 655 with f(k) = k(k + 1)(k + 2). In this particular
case, b, = 3 and therefore the number of integers with the given property

is
3
n 1——1.
()
(659) (Problem #316, in Barbeau, Klamkin and Moser [3]) We easily observe

that f(n) = n + k, where k is such that k? < f(n) < (k + 1)2. We will
show that k = ||\/n|. But we have successively

kK> <n+k<(k+1)2
E+1<n+k<(k+1)2-1,
E—k+1<n<(k+1)2-k-1,
K —k+1<n<k®+k,

1\? 3 1\?
k—= T<n< il
( 2) +4_n_(k+2>

1\? 1\?2

k— = s

( 2) <n<<k+2>,

1 1
k__ ey
2<\/E<k+2,

1
4’

1
k<\/ﬁ+§<k+1.
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These inequalities imply that k = [y/n + 3] = ||v/n].
(660) Let f(n) := 34, u(d). First of all, we observe that f is a multiplicative
function. This follows from the fact that if (m,n) =1, then

d*Imn <= d = dydy, with (dy,d3) =1, d¥m,d5n
and therefore

flmn)= 3" pd)= > pldidg) = Y u(di) Y u(dz) = f(m)f(n).
dz

d*|mn d¥|m,d5|n d¥|m
Finally, since

fp*) =1+ Zu(p):{ (1) ﬁg;’;

p*|p=

the result follows.

(661) (Contribution of Imre Kdtai, Budapest). The equation z? +1 = 2(y? + 1)
being a Fermat-Pell equation (since it can be written in the form z2 —2y? =
1) means it must have infinitely many solutions {z,y}. Thus, given a
particular solution {z,y} of this equation, we have

Ma® +1) = M2(y” +1)) = M2My* +1) = =My + 1),

and the result follows.
(662) (MMAG, Vol. 48, 1975, p. 120). Since ¢(n) <n —1 and (n—1,n) =1,
we have

k

¢(n)§n_1: n—1 )SZ a; 7

n—(n-1 ~n-—a

where 1 < a; <n and (a;,n) = 1.
(663) This follows from the fact that the geometric mean does not exceed the
arithmetic mean (see Theorem 5). Indeed, since

[T 7)™ < ——¥" s(a),
d|n T(n) d|n

the result follows. For the second part, we take f(n) = ¢(n) so that
F(n)=n.
(664) We have
on)=n H 1-p and ¢(n) = nH(l —-p 1
1—p! '
pn pln
Therefore,
a(n)é(n) -
Tz H (1-p 1)
pln

and this product is clearly located between 1 and C' :=[[ (1 — p~2).
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(665) Part (a) is immediate. To prove (b), we use the identity logn = logd +
log(n/d) to write

(fxg)(n)=>_ f(d)g(n/d)logn = _ f(d)logd g(n/d)
d|n dn
£ 37 f(@g(n/d)log(n/d) = (' * g)m) + (f *4')(n).

dln
To prove (c), we apply part (b) to the formula E’ = 0. We then have
0=FE' = (fxf7 = f'sf 4 = (f)
and therefore
Fr(f =~f+f"
Multiplying this last equation by f~!, we obtain

N ==+ == (fH fh).

Since f~1 % f~1 = (f * f)7!, the result follows.

(666) Since f = (1* f)/7 and since 7 is multiplicative, the result follows.
REMARK: The following ten problems are inspired by a paper of J.M.
De Koninck and J. Grah [7].

(667) Let f be additive and let (m,n) = 1. Since

frm) = s Y S = s D fdide)

d|mn d1|"
da|lm

= Tm)rn) Z (f(d1) + f(d2))

d1|n
d2|m

= Zm Zfdz

d1|n d1|n
d2|m d2|m

= Zfd121+ Zfd221

d1|n da|m d2|m di|n
= 7(71) + f(m),

the result follows.
(668) We easily obtain that 1 =1and i = E.
(669) We have

a+1 l1+a



(670)

(671)

(672)

(673)

SOLUTIONS

Since f is multiplicative, we only need to evaluate f(p®

a € N. Observing that

T — 2“’(‘1)
F(p) a+1§:
B 1+2+2+ 42 2a+1
B a+1 T a1’
we find that
- 2a0+1 7(n?)
= o = =
—Hf(p) H a+1 T(n)’
p*|ln p*|ln

as required.

Since f is multiplicative, we only need to evaluate f(p®

a € N. Since
T — ofUd) _
F(™) a+1§:
B 14—2+22 --+20‘_2“+1—1
o a+1 T oa+1”
it follows that
_ 2a+l_1
B H Jw%) = H a+1
p*{ln p*ln

253

) for p prime and

@+W@+wm+ +yw0

) for p prime and

(14—29@)4-29“’>—r 4_290ﬁ>)

Since X is multiplicative, it follows that the function A7 is also multiplica-
tive. Hence, in order to prove that A7 = x, we only need to establish

that
— 1 if oiseven
A ) = ’
()% {0 otherwise.
Since
G = (DD = (DI 4 (1)

d|p>
= (D' HEDT D

+ (_1)a’

(1))

a quantity which is reduced to 1 if « is even and to 0 if a is odd, the result

follows.
It is enough to solve the equation

Zf

Since this equation can be written successwely as

g(n) =

Tg = 1xf,
x(rg) = f,
[ = ux(r9)

and since g is multiplicative, it follows that f is also multiplicative.
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(674) We know, from Problem 673, that the function f is multiplicative and is
given by the equation f = u * (7g). It is therefore enough to find the
values of f(p*) for p prime and a € N. Clearly,

f(p) = p()T(p)g(p) + u(p)r(1)g(1) =29(p) —1=4-1=3.
On the other hand, for a > 2,
f0*) = n()T(@*)g(@*) + p@E)T(P* HNg(P*") = (@ +1)-2—a-2=2.

This means that

o 3 ifa=1,
f(p)_{z if o> 2.

In other words,

=1Is- 11 2

p”n li'(1 ||7'l

(675) Since f= (1x(u2f))/2* and since u, f and 2% are multiplicative functions,
the result follows. R

(676) We easily obtain that 1= 1 and X = E.

(677) Let us begin with the case k = 3. We have

3(n) = Z 1= Z 1

didadz=n (d1d2)-d=n
= > Y 1= r(/d)=1x7)(n)=(1x1x1)(n).
dln did2=n/d d|n

If k = 4, we proceed in a similar manner and obtain

mm) =3 1= 3 1=} 3 1

didzdzds=n (d1d2d3)-d=n din didadz=n/d
= ng(n/d) =(1*x73)(n) = (1*x1*1x1)(n).
dln

The result then follows by induction on k.
(678) We obtain successively

S RO =Y @ = S 1= 3 2] s

[
k=1 k=1 d|k d=1 m=1 d=1

(679) (AMM, Vol. 75, 1968, p. 77). Setting F = 7 and f = 1 in the equation
of Problem 678, we obtain

éf(m:g[z—k’f] —;[ ]+k§:[n+k] :;[%”] .

(680) This follows from Problem 678 by choosing f(n) = ¢(n) and F(n) =n
(681) This follows from Problem 678 by choosing f(n) = A(n) and F(n) = logn.
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(682) In light of Problem 552, ZHm A(k) = 1 if m is a perfect square and 0
otherwise. This is why

éw@ 5] :@ Zl-D S-S am

ki<n m<n m=1k|lm
klm
n
= § 1=[vn].
m=1
m perfect square

(683) (Kirschdk Competition, 1983). We shall display two such integer se-
quences. We first show that the number n = 2*¥+1 4 2 satisfies S(n) > n
for each positive integer k. Indeed, since n can be written as n = 2(2¢+1)
with 2% +1 > 3 and since 2% +1 has at least one prime divisor ¢ > 3, then

S('Il) — S(2k+1 + 2) > 2k+1 =+ ql > 2k+1 43> 2k+1 +2= n,

where we used the fact that 2% is the largest power of 2 not exceeding
2k+1 4 2. This therefore establishes that n = 2k*1 4 2 satisfies S(n) > n
for each positive integer k.

It is just as easy to see that if n = 2p, where p is an odd prime number,
then S(n) > n. Indeed, let k be such that 2k < n < 2k*1 Then,

n
S(n)22k+p>§+p:p+p:2p:n.

(684) We have

n

Sty =331=3 5 1=3[3].
k=1 k=1 d|k d<n k<n d<n
dlk
(685) We have
Doty =Y3d=>"d Y 1=Yd|Z].
k=1 k=1 d|k d=1 m<n/d d=1
(686) We may first write
S o)=Yk ED oS ) 3
k=1 k=1 dlk d=1 j<n/d

Using the fact that

Zm: m+1)

we obtain the result.

(687) This is an immediate consequence of Problems 1 and 552.

(688) (AMM, Vol. 94, 1987, p. 795). Let {x} = x — [z] stand for the fractional
part of z. Then k € S(n) if and only if {n/k} > 1/2. If k > 2n, then
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n/k < 1/2 and therefore k ¢ S(n). Hence, k € S(n) implies k < 2n. Since
[2z] — 2[z] = 0 if {z} < 1/2 and 1 otherwise, we have

T if(k) (1] -23)
S MCIEI RO WEIH

= (2n)—29( ),

where we used the fact that [n/k] = 0 when k > n.
For the particular cases, it is enough to use the identities

n

S [f] = "5 Taw[f] -

k=1 k=1

S A [f] =roen Yaw[F] =1va
k=1

which are respectively the subjects of Problems 680, 607, 681 and 682.
(689) Using the relation Z ¢(d) = k, we have
dlk

> ZZ¢<n>w]’"=Z(Z¢<d)) -

n=1 n=1j=1 k=1

3

(zg ) C 3 ) 3 s

d|n di=1 da=1

(dl) (fL‘dl +m2d1 +x3d1+_”)

> f)ar = Z
>

— Zg(n)(xn+x2n+m3n+”_)

= D 9

(691) (Niven, Zuckerman and Montgomery [25], page 313). In fact, we will
show a much more general result, namely the following: “Let f be a
multiplicative function and consider the matrix Myyxn = (bij)nxn, where
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b;,; = f((4,7)), that is the value of the function f evaluated at the GCD
of i and j. Then,

det M = g(1)g(2) ---g(n),
where g is defined by g(n) = 3_;,, u(d)f(n/d).” 1t is clear that by tak-
ing f(n) = n and using the fact that 3, u(d)G = ¢(n), we find as a
particular case the original problem.

Let A = (a;j)nxn be the matrix for which each element a;; is defined
by a;; = 1 if j|i and a;; = 0 otherwise. Observe that the matrix A is
triangular with 1’s on the diagonal and 0’s above the diagonal, so that
det A = 1 and moreover that

(1) det AT =1,

where AT stands for the transpose of matrix A. Finally, let H = (hij)nxn
be the matrix defined by h;; = g(j)a;;. We easily see that H is also a
triangular matrix, with the elements h;; = g(j)a;; = g(j) on its diagonal
and 0’s above its diagonal. It follows that

(2) det H = [] 9(4).

j=1
Then consider the matrix HAT. We obtain that HAT = (£;;)nxn, where

(3 by o= D gkamair =Y. gk)= 3 uk/d)f(d)
k=1

k|(4,5) k|(3,5) dlk
= 3 Y umf@ =3 f@) Y wlr) = £ ),
d|(8,5) p| i) d|(3,5) |2

where we used the fact that 3°;, u(d) =1if 2 =1and 0if 2 > 1. It then
follows from (1) and (2) that

(4) det HAT = det H - det AT = [ [ 9(5).
j=1

In light of (3) and (4), the result follows.

REMARK: The determinant M is often called Smith’s determinant (see
Shapiro [38], page 75).

Setting g(m) = 1 in the solution of Problem 691, in which case f(m) =
7(m), we have

det M =[] 9(j) = 1.
j=1
Setting g(m) = m in the solution of Problem 691, in which case f(m) =
o(m), we have

n n

det M = Hg(j): Hj:n!
j=1 j=1

Setting f(m) = p(m) in the solution of Problem 691, in which case the
corresponding function is multiplicative with, for each prime number p,

glp) =-2, g =1, g»*)=0 ifa>3,



258

(695)

(696)

1001 PROBLEMS IN CLASSICAL NUMBER THEORY

we get that

det Mlxl ].,

det M2x2 = 1- (—2) = —2,

det M3x3 = 1 (—2) (—2) = 4,

det Myxy = 1-(=2)-(-2)-1=4,

det Msxs = 1:(-2)-(-2)-1-(-2) =-38,

det Mgy = 1-(=2)-(-2)-1-(-2)-4=-32,

det M7z = 1-(=2)-(=2)-1-(-2)-4-(—2) =64,
while for each integer n > 8,

det Mpyn =1-(-2)-(-2)-1-(-2)-4-(-2)-0-...=0.

Using the solution of Problem 691 in order to first evaluate the determi-
nant of the matrix Mo = (@;j)nxn, where a;; = 1/(4, j), that is by setting
f(m) =1/m so that

1 1 ¢
)= S o = 55 i =TT ) - ) T,
we have that
(1) detMo= Hg H%H«p):H%( 1)“O()
Jj=1 plj Jj=1
= i L6 10290)
7 11

Using the fact that a common factor of the elements of a row or of a
column can be factored, we obtain

()

(2)  det M = det ([3, 1])nxn = det ((w)>m = nldet ((Z"jj))nxn

1
= nln!det (—) n!)? det M.
(i, ) = (v °
Combining (1) and (2) gives us the result.
We have
> pn)gla/n) = > > fl@/mn)
n<zx n<x m<z/n
(n,d)=1 (n,d)=1 (m,d)=1
= Y un)f(z/mn)
mn<zx
(mn,d)=1
= > fl/r) Zu = /().
r<z

(rd)=1
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(697) The result follows from the fact that

> Y s@itmd = 3 wd)smd = ¥ (Su@) i

dlk m<N/d md<N n<N “d|k
d|k d|n
= > [
n<N
(n,k)=1

(698) We obtain the result by writing

S M) =3 3 um) = S wm) =33 w(@)

n<x n<rm<z/n mn<z r<z d|r
=1+ > Y pld)=1+0=1.
2<r<z d|r

(699) This result is trivial, since p(n(n + 1)) = 2 for each positive integer n.
(700) Since 10" =1 < n < 10¢M | we have c¢(n) = [log;on] + 1. Set

o= >, £ and Y,= ) d
d

1<i<c(n)
1<d<n
Let us show that for n > 10°, we cannot have Y, = Y., because ), is
much to small with respect to ) _,. Indeed,

(%) 21 < 8lc(n) < 81(logpn +1).

On the other hand, since each composite number has at least one proper
divisor > /n,

(%) S, > V.

Thus, combining () and (*#), we would have

Vn <y, =3 <81(logygn + 1),

which is not true if n > 10°.
(701) (a) Using MAPLE, we can write

> for n to 10000 do

> p(n) := 4xtau(n + 2)—phi(n);

> if p(n) =0 then print(n) else fi;

> od:

This procedure generates the numbers 15, 32, 60, 64, 68, 90, 102, 110
and 130.
REMARK: In fact, one can prove that these are the only solutions of
the equation 47(n + 2) = ¢(n). Indeed, first observe that it follows from
Problem 207 that

Sg(1-1)=-F - Y oY LY

p<n p<n a>2p<n p<n a>2 p

>—Z%—1.

p<n
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Using this inequality, we get that

(i) o) =n][ (1 - %) >n ] (1 . %) _ peXpenlog(l=1/p)

pln p<n

> n
— -
e- ezpsn P

On the other hand, it follows from relation (1) of Problem 220 that
1
) Z — < 2loglogn (n > 100).
psn

Combining (¢) and (i%), we obtain that
n

(741) ¢(n) > ne2losloen — log—zn (n > 100).
But, we have seen in Problem 640 that

(iv) T(n) <2y/n  (n>1).

Thus, combining (i#4) and (iv) and observing that

8vn+2 <

g n
for at least all n > 3000000, we obtain that

47(n+2) < 8vVn +2 < <¢()

as soon as n > 3-10%. Therefore, we only need to check, using a computer,
that 47(n+2) = ¢(n) has no solution n < 3-10°, and the problem is solved!

(b) Similarly, with MAPLE, we can write

> for n from 1 to 2000 do p(n):=sigma(n)-((2*n)-1);
> if p(n)=0 then print( n) else fi;
> od:

This procedure generates all powers of 2 smaller than 2000.

Tt seems natural to first examine the possible solutions of the form n = 2.
For such a number to be a solution, we must have that ¢(o(2%)) = 2% and
therefore that

(*) p(2FF —1) = 2%,

We observe that such is the case if £ = 0,1,3,7. This suggests that we
should examine the cases where k = 2% — 1, that is when

2kt 1 =92" 1 = (227 1)(22"‘ 1+1)
= 27 -DEF T+ DETT +1)
= @7 - FDEFTT +EMT 1)

@2 -2+ D22+ 124 +1)--- (22 +1)
= 3.5.17-257--- (22" +1).
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Hence, if 22 +1lisa prime number for each integer i such that 1 < i < a—1,
then substituting £k = 2% — 1 in (x), we do indeed obtain

(2" — 1) = (3)B(5)p(17) - 9(22" +1) =227,
since
2.22.94...92%7 = 2",
It is known that 22° +1 is (a Fermat) prime if 8 =0, 1, 2, 3, 4, thus yielding
the numbers k¥ = 1,3,7,15,31. Taking into account the trivial solution
n = 2% = 1, we have thus found six solutions of ¢(c(n)) = n, namely
n=1,2,2327 215 231

REMARK: Only 24 solutions are known for this equation: besides the six
mentioned above, J.L. Selfridge, F. Hoffman and R. Schroeppel (see [16],
p. 99) have found the 18 solutions shown in the following table:

12 = 22.3
240 = 2¢.3.5
720 = 24.32.5
6912 = 28.33
142560 = 25.3%.5.11
712800 = 2°.34.52.11
1140480 = 28.3%.5.11
1190400 = 2°-3-52.11
3345408 = 210.33.112
3571200 = 29.32.52.31
5702400 = 28.3%.52.11
14859936 = 2°.36.72.13
20719872 = 26.36.72.13
50319360 = 212.33.5.7.13
4389396480 = 213.37.5.72
21946982400 = 213.37.52.72
11681629470720 = 221.33.5.113.31
58408 147353600 = 221.33.52.113.31

(703) Let n = ng be a solution of ¢(c(n)) = n. Set my = o(ng). We indeed
have that m = my is a solution of a(¢(m)) = m, since

a(¢(mo)) = a(¢(a(no))) = a(no) = mo.

In Problem 702, we showed that n =1, 2, 8, 27, 215 and 23! are solutions
of ¢(o(n)) = n; we derive from this that m = o(1) = 1, m = ¢(2) = 3,
m=o0(8) =15 m=0(2") =28 ~1=255 m=c(2%) =216 -1 =65535
and m = 0(23!) = 232 — 1 = 4294967295 are solutions of o(¢(m)) = m.
REMARK: It is clear that one can generalize this result and state that if f
and g are two arithmetic functions and that if n = ng is a solution of the
equation f(g(n)) = n, then m = my = g(ng) is a solution of g(f(m)) = m.

(704) (Golomb [15]). Let n = 3P~! where p and (3P — 1)/2 are two prime
numbers. We then have

¥1_1 3°-3

a(p(n) =0 (2377 =3 = 2
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while

-1\ 3r-1 1_3?—3
D) 2

o) =0 (*5

which proves the first statement.

Using the MATHEMATICA program
Do[p=Prime[i];If[PrimeQ[q=(3"p-1)/2], Print(p," ",q," ",
n=3"(p-1)11,{i,1,100}]

we obtain the following values for p: 3, 7, 13, 71, 103, 541. The first three
corresponding values of n are then 9, 729 and 531 441.
One can also find these values using the following MAPLE program:

> for i to 20 do if isprime( (3"(ithprime(i))-1)/2) then
> print(‘n‘=3"(ithprime(i)-1) ) fi; od;

There exist other solutions apart from those listed above, namely 225,
242, 516, 3872, and many others.
It seems natural to consider the numbers n of the form n = 2%, k a positive
integer. For such a number to be a solution of ¢(7(n)) = 7{¢(n)), we must
have ¢(k+1) = 7(2871); that is #(k+1) = k, an equation which is solvable
only when k + 1 is a prime number, that is when k£ = p — 1, with p prime.
This is why the equation ¢(7(n)) = 7(¢(n)) has infinitely many solutions.
We will show that n is a solution of 7(y(n)) = v(r(n)) if and only if
n = p® with p prime and « a positive integer such that a + 1 is a power
of 2.

Let us first show that the condition is sufficient. So let n = p®, where
p is prime and a = 2% — 1 for a certain positive integer k. We then have

T(v(p*) = 7(p) = 2,
while
Y(r(p®) = (e +1) =(2F) = 2.
To prove that the condition is necessary, we proceed by contradiction.
Two situations may occur:
(i) n = p* with o # 2% — 1 for each integer k > 1.
(ii) w(n) > 2.
In case (i), we have 7(y(p®)) = 7(p) = 2, while v(7(p*)) = y(a + 1) > 2.

In case (ii), we have n = ¢ ¢5? --- g% for certain prime numbers q; <
q2 < ... < g, and certain positive integers «;’s, i = 1,2,...,r, with r > 2.

It follows that 7(v(n)) = 27, while y(7(n)) = y((@1+1)(az+1) - - - (@r+1))
is either equal to 2 or else divisible by a prime number p > 2, and therefore
in both cases, y(7(n)) cannot be equal to 2" with r > 2.

The following is the list of all the solutions n < 10¢, n nonsquarefree, of
(%): 49, 1681, 18490, 23 762, 39325, 57121 and 182182. The fact that ()
has infinitely many nonsquarefree solutions n follows from the fact that
the Fermat-Pell equation (x*) 222 — y? = 1 has infinitely many solutions:
indeed, to every solution (z,y) of (**), one can associate the solution n
of (x) given by n = y% and n + 1 = 222, in which case §(n + 1) — §(n) =
2-1=1

We will show that the only two solutions are n = 1 and n = 6. Taking
into account the remark following the solution of Problem 703, we get a
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bijection between the solutions of y(g(n)) = n and those of

(1) o(y(n)) = n.
We will therefore look for the solutions of this last equation. First of all,
it is clear that n = 1 is a solution of (1). So let n > 1 be a solution of (1).
If n is a prime power, that is n = p®, then (1) implies that o(p) = p®; that
is p+ 1 = p™, which is impossible. We then have that n has at least two
distinct prime factors. We write n as a product of distinct prime powers,
that is

n=q'g? g (r22)
From (1), we have

(2) (@ +1)(g2+1)--(gr +1) =q7"q52 - - g2

If g; > 3, then the left-hand side of (2) is even, while its right-hand side
is odd, which is impossible. Hence, g; = 2. Therefore, (2) can be written
as

3) a2 +1)(gr +1) =2%¢3" - g
Since ¢, divides the left-hand side of (2), it must divide 3 or one of the
factors ¢; + 1 for a certain 2 < ¢ < r. Since this last alternative is
impossible, we have that ¢, |3, so that g, = g2 = 3. It follows that equation
(3) becomes
(2+1)(3+1) = 293,
2°.3 = 2%3%,
and therefore by the uniqueness of factorization, we may conclude that
a1 =2 and oy = 1, which gives rise to the solution n = 12 of (1). Hence,
we easily obtain that the only two solutions of v(o(n)) = n are n = 1 and
n = 6.
Since 8 does not divide k, it is clear that k is either odd or of the form
4+2,£=0,1,2,..., or else of the form 8¢+ 4, £=10,1,2,....
In the first case, we have that o (6) = 1% + 2% 4 3% + 6 is divisible
by 6, since
P2k 43f416F=14+3*=14+1=0 (mod?2)
and
1F 428435 +6F=1+2"=1-1 =0 (mod 3),
while 01(2) = 14+ 2F £ 0 (mod 2), 0x(3) =1+ 3% £ 0 (mod 3), ox(4) =
1+2F+4% 20 (mod 4) and 0% (5) = 1+ 5% Z 0 (mod 5).
In the second case, we have that a4 (10) = 1% +2% +5F + 10* is divisible
by 10, since
1F 2455 +10F =145 =1+1=0 (mod 2)
and
1F ok ppFr10F=142F=142%.22=1+1-4=0 (mod 5),
while 0% (n) £ 0 (mod 10) for each integer 2 < n < 9.
In the third case, 0% (34) = 1¥ + 2% 4 17% 4-34% is divisible by 34, since

P2k 17 434k =14+17" =141 =0 (mod 2)
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and

1k ok 17k 134k =142k =1428 .24
=1+ (-1)%*.(-1)=0 (mod 17),

while ox(n) £ 0 (mod 34) for each integer 2 < n < 33.
We will establish that
$(n) _ 2

L= n=3 k=12 ... .
() =3

T . : o(n) _ 2 g
The implication (<) is easy to verify. So assume that <> = £. Since

3¢(n) = 2n, we have that 3|n, and this is why there exist two positive
integers k and 7 with (r,3) = 1 such that n = 3*r. We then obtain
successively

3¢(35)p(r) = 2-3%-r
3-3F 13- g(r) = 2-3F.r
(r) =

which implies that » = 1, thereby completing the proof of (k).

By hypothesis, we have 7¢(n) = 4n. It follows that 7|n and therefore
that there exist two positive integers 8 and r, with (r,7) = 1, such that
n = 7Pr. We then obtain successively

6(17)p(r) = 4-7°.m,
77T -D)p(r) = 4-7°.7,
)

6p(r) = d4r,
olr) _ 2
r 3

Using the result of Problem 710, we obtain that » = 3% for a certain
positive integer a, and this is why n = 7%r = 3278, as was to be shown.
(AMM, Vol. 88, 1981, p. 764). First assume that n = p"; we then have

() sy = T2

so that n = 3 if n = S(n). Since 7 is a multiplicative function, the
function S is also multiplicative. However, if n = S(n) and n # 1 and 3,
then there exist prime numbers ¢; and g2 and also positive integers a and
b such that ¢f|n, ¢5|n and (¢f,n/qf) = 1, (a8,n/q) = 1, S(af)/qf > 1
and S(g8)/¢4 < 1. From relation (x), it follows that ¢¢ must be 2, 4 or
8. Therefore, 1 < S(q%)/q% < 3/2; this is why ¢} is not a power of 2 and
must satisfy 2/3 < S(¢8)/g5 < 1. Again using (), we find that the only
possible value of g5 is 9. Therefore,
S@) _2 S _3

¢ 3 ¢ 2
so that no prime numbers other than 2 and 3 can appear in the represen-

tation of n as a product of distinct prime powers. We conclude that the
only solutions are n =1, 3, 18 and 36.
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(a) The only such numbers are n = 14, 15 and 23. Since the divisors of 24

are 1,2, 3,4, 6, 8,12 and 24 and since o(n) = H(l +qi+---+¢]") when
=1

n = qi*---q2, it follows that the numbers 1 and 2 cannot be written as

14+qgi+---+¢i*, while3=1+2,4=1+3,6=1+5,8=1+4+7,12=1+11

and 24 = 1 4 23. Let us now examine all possible ways of writing 24 as a

product: first 3-8 gives n = 2.7 = 14; then, 4 -6 gives n = 3 -5 = 15;

finally, 1 - 24 gives n = 23.

(b) Since 57 = 3 - 19 and since it is not possible to write 3, 19 and 57 as

1+p+---+ p% we may conclude that no integer n such that o(n) = 57

exists.

It is clearly n = 1, with £ = 1.

Building a table of values of o(z) for z = 1,2,3, ..., we easily obtain that

o(z) = 12 has exactly two solutions, namely z = 6 and z = 11, and that

there are no other numbers smaller than 12 with this property.

It is n = 24, with z = 14,15, 23.

Since o(x) > z, it is clear that given any positive integer n, o(x) = n has

only a finite number of solutions z. But the integers of the form p™~!,

where p is a prime number, are solutions of 7(z) = n. Therefore, 7(z) =n

has infinitely many integer solutions z.

The answer is YES. If n is prime, then n has only two divisors, 1 and n,

in which case o(n) = n+ 1. Conversely, if n is not prime, then it has a

proper divisor d, in which case o(n) >n+d+1>n+1.

Assume the contrary, that is that n has at most three distinct prime

factors. First consider the case when there are exactly three, say 3 < ¢; <

g2 < q3. Then, since

(e

a=a(n) _ H a(p®) < q1 g2 q3
n p* qg—1lg—-1g—1
3 5 7 35
< -— = ==
—3-15-17-1 16

&
IA

p*|n

a contradiction. From this argument, it is clear that we again obtain a
contradiction if we assume that n has exactly one prime factor or exactly
three prime factors.

Assume the contrary, that is that n has at most three distinct prime
factors. First consider the case when there are exactly three prime factors,
say 2 < q1 < g2 < q3. Then, since

1 1 1 1
— =1l+-+- -+ =<1l+-4+5+-= =—
p p p p p
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we will have

(03
gSazo(n):Ha(p)< @ G2 g3
n p* q1—1lga—1g3-1

.2 8 5 15

~2-13-15-1 4’
a contradiction. From this argument, it is clear that we obtain a contra-
diction if we assume that n has exactly one prime factor or exactly three
prime factors.
Since 40(n) = 9n and (4,9) = 1, it is clear that 4|n. Assume that n = 29p®
where (2,p) =1, a > 2. We will establish that the only solutions of this
type are n = 40 and n = 224. First of all, we have

p*||n

(1) 4o(n) = 40(2*)a(p’) =4(2*"' = 1)(1 +p+---+1),
while
(2) 9n=9.29.pb.

Combining (1) and (2), we obtain
(3) (2a+1—1)(1—|—p+...+pb):9,2a—2'pb‘

Since (p®, 14+ p+---+p®) = 1, it follows that p®|22+! — 1. Similarly, since
(2672,29%1 — 1) =1, then 2°72|(1 + p + - - - + p®). Therefore, relation (3)
can be written as

2a+1_1 1+p_|_”'+pb_

4) - 5a=3 9.
Three cases are then possible:
Case #1:
20+1 1 l+p+---+p°
T =1 and 20'—_2 =0.

If a = 2, then 7 = p®; hence, b =1 and p = 7. Substituting these values
in the second equation, we obtain 1+ p = 8 = 92272, which is not
possible. It follows that we must have a > 3, which implies, in view of
the second relation, that b must be odd. If b= 1, then p = 2°*! — 1 and
p=9-2%"2 1, which implies that 26! = 9 .22 which is impossible.
If b > 3, then, since b is odd,

2 =pP L 1= (p+ 1)@ =24 —p+ 1) = (p+ 1)Q,

where ) > 1 is odd, because it is the sum of b odd numbers, which is also

impossible.
Case #2:
20+l 1 l+p+---+p°
p—b =3 and 2‘1—"2 =3.

As in the preceding case, we must have a > 3 and b odd. If b = 1, then the
above relations bring us to the solution p = 5 and a = 3, that is n = 40
and no other solutions. One easily checks that the cases a =4 and a =5
generate no solutions. If b > 3, then setting 8 = a+ 1, we have 8 > 6 and
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we obtain 27 — 1 = 3p®, an equation which has no solutions. Indeed, if 3
is odd, then

28 1=(-1)-1=-2=1#0 (mod 3),
a contradiction. Similarly, if 3 is even, then
2% —1=(2%2-1)(2°/% + 1),

which means that 3/(2%/2 — 1) > 3 or that 3|(2%/2 + 1) > 3, and this is
why we necessarily have that p|(2/2 — 1) > 3 or that p|(2°/2 + 1) > 3,
which would mean that p|2, which is nonsense.
Case #8:

201 1 l+p+---+p°

T =9 and %
As in the preceding case, we must have a > 3 and b odd. If b = 1, then
the above equations lead to the solution p = 7 and a = 5, that is n = 224,
and no other solutions.
REMARK: The equation o(n)/n = 9/4 has other solutions, in particular
n = 174592 and n = 492101632. It is quite possible that this equation
has infinitely many solutions, but no one knows how to prove it.
(Sierpinski [39], p. 176) Consider the numbers m = 2(13% — 1), where
k=1,2,.... Since

=1

13 -1
13-1
=2-(13F—1) =m,

o(14-13F" 1 =o(15-13* 1) = (23 - 13*"1) =24

the result follows.
Setting n = 2¥p in the equation 7(n) + o(n) = 2n, we easily find that

(%) p=2"1 42k +1.

Therefore, to each prime number p of the form (*), we can associate the
dihedral perfect number n = 2¥p. The five smallest numbers n of this
kind are 14, 52, 184, 656 and 34 688.

Let 2 =[];_; ¢/, so that

d) =] M@ -1) =24
i=1

this is why the largest prime factor of £ must be < 23. Hence, the only
prime factors of z are 2, 3, 5, 7, 11, 13, 17, 19 and 23. Since 10 /24, 16 /24,
18 /24 and 22 /24, it follows that the prime numbers 11, 17, 19 and 23
cannot divide x. Hence, the only possibilities for the prime numbers are:
p=2, 3,5 7and 13. Let z = 2*-3%.5°.7%.137. Since ¢(z) = 24, we
derive that 0 < a <5,0<b<2and 0 <c,d,e, f < 1. We may therefore
conclude that the solutions of ¢(x) = 24 are 35, 39, 45, 52, 56, 70, 72, 78,
84 and 90.

Let n = qf* ---¢p*. Then,

¢p(n) =gt g T @ — 1) (g — 1)
If ¢; is an odd prime number, then the term g; — 1 contributes to a factor
2, in which case x cannot have more than r distinct odd prime factors.
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First of all, assume that n = 2" with r > 1, so that ¢(n) = 2"~1. Since
4 f¢(n), it is clear that r must be equal to 1 or 2; that is n = 2 or 4.
Now, assume that n = 2" N where N > 1 is an odd number. If ¢(n) is not
divisible by 4, then from Problem 725, n cannot have more than one odd
prime factor. Let n = 27p*, where k > 1 and p is an odd prime number.
Since 4|p—1if p=1 (mod 4), we have that p must be of the form 4M +3.
In this case, ¢(p*) is divisible by 2 and not by 4. Hence, we must choose
r so that ¢(2") is odd; that is we must choose r = 0 or r = 1. Finally,
the only integers n for which ¢(n) is not divisible by 4 are 1, 2, 4 and the
numbers of the form p* or 2p*, where p = 3 (mod 4).

First assume that n = 35%t2 gr 2. 365+2_ Tt is clear that
¢(36k+2) _ 2
36k+2 3’
so that
(*) ¢(36k+2) =9. 36k+1 = m.

It follows that we also have
¢(2 . 36k+2) — ¢(36k+2) =9. 36k+1 = m.

Reciprocally, if ¢(n) = m = 2 - 35%+1 then setting n = r - 365+2 with
(r,36%+2) = 1, we will have

p(n) = p(r)p(3%5+2) = 2. 3%+ =

which implies by () that ¢(r) = 1 and therefore that » = 1 or 2, as re-
quired. Finally, since to each integer k£ > 1 we can associate two solutions
n (that is n = 3%%+2 and n = 2 - 3%%+2) of ¢(n) = 2 - 36%+1  the second
part follows immediately.

Since 2 - 7™ is divisible by 2 and not by 4, it follows from Problem 726
that ¢(n) = 2-7™, which in turn implies that n must be of the form p* or
2p*, where p = 3 (mod 4). In each of these cases, ¢(n) = p*~!(p—1) and
¢(n)=2-7™ implies that k =1l and p—1=2-7™, that isp=2-7"+ 1.
Since 7™ =1 (mod 3), it follows that 2- 7™ + 1 =0 (mod 3), and this is
why 2-7™ + 1 cannot be a prime number if m > 1.

If n is prime, the result is immediate. Conversely, if n is not prime, then
n must have a proper divisor d which cannot be relatively prime with n.
Hence, ¢(n) < n —2.

Let z = g7*---¢% be the representation of z as a product of distinct
prime powers; then

¢(z) = [T o (a - 1) = 2p.
=1

Consequently, g; —1|2p. But, since the divisors of 2p are 1, 2, p and 2p and
since 2p+ 1 is a composite number, we conclude that the only possibilities
are g —1 =1 and ¢; — 1 = 2. This implies that x must be of the form
z = 2°3%. But ¢(x) = 2p implies that 22713~ = p. Hence, p = 2 or
p =3, and since 2p + 1 is a composite number, we conclude that no such
T exists.
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If n = 2% with k > 1, the result is immediate. Assume now that n = 28N,
(2, N) = 1. In this case, ¢(n) = 2°~1¢(N) and the condition ¢(n) = n/2
implies ¢(N) = N; that is N = 1 so that n = 2*.

Let n = 2"5°N, where (N,10) = 1. Using the condition ¢(n) = 2n/5,
one can easily show that it implies that ¢(N) = N and therefore N = 1.
Conversely, ¢(275°) = 271551 = 2n/5.

Let n = 3°N, where (N, 3) = 1. Then, ¢(n) = 3°712¢(N) = 3*"IN and
therefore ¢(N) = N/2. Assume now that N = 2°M, where (2, M) = 1.
Substituting, we find ¢(M) = M; that is M = 1. Therefore, there are
infinitely many values of n satisfying ¢(n) = n/3, namely n = 2°32, b > 0,
a > 0.

Since

we must have
4[Je-v=]]r
pln pln
Since 4 f len p, we conclude that there exist no integers n verifying the

relation of the statement.
(TYCM, Vol. 26, 1995, p. 298). If p = 12k + 11 and a is an even number,
then

#(p*) = p*Hp — 1) = (12k + 11)*~1(12k + 10)
- 2((12k F11)eY(6k + 5)) = 2(6n + 1),

Il
sy

for a certain positive integer n, since 117! .5 = (-1)71(-1) =
(mod 6). Reciprocally, if ¢(p®) = 2(6n + 1),

¢(p*) =p*"H(p— 1) = 2(6n +1) —2Hp Hq] :

where the p;’s are prime numbers of the form 6k+1 and the g;’s are prime
numbers of the form 6k + 5. The prime p must be one of the p;’s or one
of the g;’s. Assume that p = py, so that a — 1 = oy. The above equation
can therefore be reduced to

pe—1=2]]p [T
ik j
The left-hand side is congruent to 0 modulo 6, while the right-hand side is

congruent to 2(—1)Z Bj = +2 modulo 6. This contradiction implies that
p must be a g;, say p = qx. Therefore, a — 1 = B and the above equation

becomes
g —1=2]]p" [
i j#k
The left-hand side is congruent to 4 modulo 6, while the right-hand side
is congruent to 2(—1)" modulo 6, where r = 3., 83;. Clearly, 7 must be
odd. However, we also have

6n+1=Hp Hq]’E 1)™P: (mod 6).
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Since the left-hand side is congruent to 1 modulo 6, it is clear r + 3, must
be even and therefore that 3, must be odd. It follows that a = Gx + 1
is even. We have thus shown that p =5 (mod 6) and therefore that p is
congruent to 5 or 11 modulo 12. If p = 12n + 5, then

$(p®) = 2((12n +5)% 1 (6n + 2)) — 9m,

where m is congruent to 4 modulo 6. This is a contradiction, and this is
why we must have p = 12n + 11, as required.

(a) It is immediate that ¢(n) < n. Hence, we only need to prove the left
inequality. The result is immediate for n = 1. So, assume that n > 1, and
write n = 2%gJ* - .- g%, where 2 < ¢; < ... < g, are prime numbers and
the a;’s positive integers. We then have

¢(n) =27 ] g (e — D)
=1

Since p(p —3)+1=(p—1)>—p>0for p>3, we havep—1> ,/p. On
the other hand, for each positive integer a;, we have a; — % > %ai. This
is why
p(n) = 2% 1l g¥ T g - 1) (g — 1)
P S
la

[N

> 2007lgEN g3 >

vn,

DN | =

and the result follows.

(b) Since ¢(z) = n > 1/, the result is immediate.

To these three questions, we easily find the answers n = 3, n = 2 and
n = 1, respectively.

First let n = p, a prime number. Then the equation },,, f(d) = 7(n)f(n)
implies that f(1) + f(p) = 2f(p), so that f(p) = f(1). Similarly, we
show that f(p*) = f(1) for each positive integer a. Then we show that
f(pg) = f(1), and so on. The result then follows with ¢ = f(1).

The result follows from Problem 738 using the fact that, since f is multi-
plicative, f(1) = 1.

We shall prove that n is a solution of (*) if and only if n = pP, where p is
a prime number, thereby establishing in particular that (x) has infinitely
many solutions. Now, first of all, it is clear that if p is prime, then by
setting n = pP, we have Q(n) = p, so that Q(n)?™ = p? = n. Let us
assume that there exists a composite number r > 4 such that n = r" is
a solution of (x). In that case, it will follow that Q(n) = Q(r") > 2r,
meaning that

Q(n)ﬂ(") > (27’)2T >rT =n,

thereby contradicting (x). We have thus established that the set of solu-
tions (*) is the set {p? : p prime}, thus proving our claim.
We shall examine successively the possible solutions n of () according to
the positive integer 8 such that 27||n.

We first observe that equation (*) has no odd solution. Indeed, assume

oy 02

that such a solution n = ¢7¢3%-- ¢, with 3 < ¢ < g2 < ... < gy,
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exists. In this case, because the function 3, v(d) is multiplicative, (x)
can be written as

(2) 73 g = (14 oa1q) (1 + a2q2) - - - (1 4 apgyr).

If each exponent «; is larger than 1, then the left-hand side of (2) is larger
than its right-hand side, a contradiction. It follows that there exists at
least one exponent «; equal to 1, say o, = 1 (1 < ip < r). We then
have 1+ a4, ¢;, = 1+ ¢s,, so that the left-hand side of (2) is odd, while its
right-hand side is even, a contradiction. This shows that any solution of
(*) must be even.

Let 3 > 1 be the unique integer such that 2°||n. We write n as

n = Qﬂql ...qrp(lll ...p?s7
where the «;’s are greater than 1 and the g;’s and p;’s are the odd prime
factors of n. We allow the possibility that there are no p;’s or no g;’s.
Observe that, since ¢; + 1|n and ¢; + 1 is even, we can assume that r < j.
We will first show that 3 < 4. Indeed, equation (%) can be written as
1+28qi+1 ¢ +1 _ pf* pg
2 ¢ ar l+aipr  1+asps
It follows that

1+28¢1+1 ¢ +1 S
28 q1 qr -
Hence, assuming that 8 > 5, we would get

14281 +1 g +1 114681214
ce <—=-=-—=—x1
28 Q1 qr 323571113
a contradiction, which proves that 8 < 4. We will now consider separately
the four cases 3 =1, =2, =3 and 8 =4.
First assume that 3 = 4. Then 1+ 4 -2 = 9 divides n, which implies
that

1.

7

py' ps o3 9
1+ aip: 14+asps 1423 7
On the other hand,

1420 +1 g+l _ 946812 9
28 a1 g ~ 1635711 ~ 7’
a contradiction. It follows that 3 =1, 2 or 3.
Now assume that 8 = 3. We then have that 1 + 3 -2 = 7 divides n.
Clearly, either 72|n or 7||n. If 7%|n, we have
prt P T 49
1+aipr l14agp, " 14+2-7 15
But since § = 3, we must have

1+28q1+1 g +1 _7468 8 49

=<,
2 q g ~ 8357 5 15
a contradiction. Therefore 7||n, in which case we obtain that 23 - 7 = 56
is a solution. Now, n cannot have any other odd prime factor ¢ such that
q||n since otherwise it would imply that (14 7)(g + 1)|n, forcing 3 to be
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larger than 3. Finally, n cannot have any odd prime p such that p?|n
because it would imply
2 1 22147
P +3-21+7 ’
p+1 23 7

again a contradiction. We have thus established that n = 56 is the only
solution of (x) provided by the case 3 = 3.

Now assume that G = 2. In this case, 1 + 2 -2 = 5 divides n. Either
52|n or 5||n. If 52|n, we get

N )
14+ aip 1+ asps — 117

On the other hand, since 8 = 2, we have

14286 +1 ¢ +1 §§é§=2<§
268 Q qr 435 11

a contradiction. Hence 5||n, which implies that 5 + 1 = 6 divides n, so
that 3|n. Assuming that 3||n, we would have that (3 + 1)(5 + 1)|n, so
that 8|n, thereby contradicting the fact that 3 = 2. Hence, either 3%|n or
32||n. If 33|n, then

(e3% (e8 3
PP 3 2T I 2adl el
1+a1pr 1+4asps — 1+3-3 10 26 q1 qr

a contradiction. We can therefore assume that 3%||n, in which case 1+ 2-

3 = 7 divides n. Therefore, either 7||n or 72|n. If 7||n, then (7+1)(5+1)|n,

so that 16|n, which contradicts the fact that 8 = 2. Hence, 7?|n, so that
b 4

> — > 2,
1+ a1py 1+ asps — 15

also a contradiction.

It remains to consider the case 3 = 1. This case implies that 1+2 =3
divides n. Then either 3||n or 32||n or 33|n. If 3||n, it implies that 3+1 = 4
divides n, contradicting the fact that 8 = 1. On the other hand, if 33|n,
we get

Pt P ¥ 27
1+ a1; 1+osps ~ 14+3-3 10

But on the other hand,
1+2ﬁq1+1”.q,«+1<§§_ 27

=2< —,
28 q g 23 10

a contradiction. We must therefore have that 32||n, which implies that

1+2-3 =7 divides n. Under the hypothesis that 7||n we get 7+ 1 =28

divides n, contradicting 3 = 1. But, on the other hand, if 7%|n, we obtain
N

__>221+2Bq1+1___qr+1’
l+aipr l14aps 15 28 ¢ qr

also a contradiction.
We can therefore conclude that the only solution of () is n = 56.
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(TYCM, Vol. 29, 1998, p. 242). Since o(n) > n and since ¢(n) < n, it
follows that o(n) — #(n) = (—1)"7(n) has no solutions when n is odd. We
only need to find all the positive even integers n such that o(n) — ¢(n) =
7(n). Using Problem 623, we find that this is possible if and only if n is
prime. Since n is even, the only possibility is n = 2.

(AMM, Vol. 79, 1972, p. 911). The only solutions are (m,n) = (2,2),(3,4)
and (4,3). Indeed, from relation ¢(mn) = dé(m)d(n)/¢(d), where d =
(m, n) (see Problem 522), we can write the given equation as 1/a+1/b = d,
where a = ¢(m)/$(d) and b = ¢(n)/é(d). Since a and b are positive inte-
gers, it follows that d =2 anda=b=1orelsethat d=1and a = b = 2.
The first case leads to ¢(m) = ¢(n) = 1, hence, m = n = 2, and the sec-
ond case leads to ¢(m) = ¢(n) = 2, which gives that one of the integers
m and n is equal to 3 while the other is equal to 4.

We have ¢(1) = (1) =1 and 1 = ¢(2) # 2 = v(2). So let n > 3, in which
case ¢(n) is even. We may therefore conclude that any other solution n
of #(n) = y(n) must be even. If n = 2% with @ > 1, we have 2071 = 2
so that @« = 2. We have thus found the solution n = 4. On the other
hand, since for each even number n we have 2|y(n), it follows that if n is
not a power of 2, then n = 2 - p* for a certain odd prime number p and
a positive integer a. If o > 3, then p?|¢(n) and p||y(n), a contradiction.
Hence, a = 1 or 2. If & = 1, we obtain p — 1 = 2p, which is nonsense.
If @ = 2, we have p(p — 1) = 2p, which gives p = 3. We have thus found
the solution n = 18 while at the same time showing that there is no other
one.

First of all, ¢(1) = y(1) = 1 and 1 = ¢(2) # 4 = 7(2)%. So let n > 3,
in which case ¢(n) is even. We may therefore conclude that any other
solution n of ¢(n) = v(n)? must be even. If n = 2% with o > 1, we have
2071 = 22 50 that a = 3. We have thus found the solution n = 8. On
the other hand, since for each even number n we have 4||y(n)?, it follows
that if n is not a power of 2, there are three types of possible solutions:
(i) n = 4-p° for a certain odd prime number p = 3 (mod 4) and a certain
positive integer a, (ii) n = 2-p® for a certain prime number p = 1 (mod 4)
and a certain positive integer «, (iii) n =2 p* - ¢® for certain odd prime
numbers p < ¢q and certain positive integers «, 3.

In case (i), we have 2p*~1(p — 1) = 4p?; that is p*~1(p — 1) = 2p°.
Since we must have a = 3, it follows that p = 3, which gives rise to the
solution n = 22 - 3% = 108.

In case (ii), we have p>~!(p—1) = 4p?. Since we must then have a = 3,
it follows that p = 5, which gives rise to the solution n = 2 - 5% = 250.

In case (iii), we have

a—1.P—1.541.q—1:22
(*) p —— ¢ 5 =P
in which case 1 < a <3 and 1 < 8 < 3. We first consider the case 8 = 3.

In this case, it follows from (*) that
pa—l.p_l‘q_l _ 2.

2 2
If « = 3, it is easy to see that p = ¢ = 3, which contradicts the fact that
p<gq Ifa=2 thenwemusthavef%l =pand p = 3, so that ¢ = 7,
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which gives rise to the solution n = 232 .73 = 6174. If & = 1, then we
must have 41 = p? and p = 3, so that ¢ = 2 - 32 + 1 = 19, which gives
rise to the solution n = 2-3-19% = 41154.

It remains to consider the cases 8 = 2 and § = 1. In the first case,
(*) becomes

a—1 P— 1 q— 1 .2
p T T T pq.

We then observe that each of the cases « = 3, @« = 2 and a = 1 leads to
a contradiction. Similarly, the case 3 = 1 generates no solutions.

We have thus proved that the only solutions of ¢(n) = y(n)?
six solutions mentioned in the statement.
Property (a) is easy to obtain. Indeed, if n > 1 is odd, then y(n)? =
o(n) is also odd, so that n = m? for a certain integer m, in which case
n < a(n) = y(n)? = y(m?)? = y(m)? < m?, a contradiction. To verify
property (b), we first observe that if n is squarefree, say n = q1q2 - - - ¢,
for certain prime numbers ¢; < go < ... < ¢, then it follows from (x)
that

are the

(1 +1)(@2+1D) (e +1) =¢gk ¢,

which is impossible since, for each prime number ¢, we have ¢+ 1 < ¢°.
It therefore follows that any solution of (x) must be squarefree.

Finally, using a computer, we find that n = 1782 = 2-3% .11 is a
solution of () and in fact that it is the only solution n > 1 which is
smaller than 10°.

REMARK: To this day, we do not know if equation (*) has a solution
n > 1782. The first author has raised this question in the Problem Section
of the AMM (Problem #10966, 109 (2002), 759).

Let k be a fixed positive integer. Let n = 2% - 3%, where o and § are
positive integers yet to be determined. We will show that an appropriate
choice of « and B will provide infinitely many integers n satisfying the
desired property. Indeed, with n as above, we have

o(n) (2011 1) F=L (getl )36+l 1)

v(n)k - 9k . 3k - 9k+1 . gk
This last quantity will be an integer if
2°t1 =1 (mod 3*) and  3°f!=1 (mod 2*+1).

Now, in light of Euler’s Theorem, these congruences will be satisfied if
a+ 1 is a multiple of ¢(3%) and if 3+ 1 is a multiple of ¢(2%+1). Clearly,
these requirements will be fulfilled if &« = 2r-3*~'—1 and if 3 = 5-2% — 1,

where r and s are any positive integers. Hence, by choosing
31 DL s
n =223 L.gs2 -1 r,s positive integers,

we get the result.

We will prove that the only solution of
(%) ¢(n) +(n) = o(n)
isn=2.

It is clear that n = 1 is not a solution of (*).
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First assume that n > 3 is an odd integer solution of (x). Since ¢(n)
is even for each integer n > 2, it follows from (*) that

even + odd = odd,
in which case there exists an odd integer a > 3 such that n = a?. We
derive from (x) that
a®> +a> ¢(a®) +v(a?) = o(a®) > a* +a+ 1,

which is nonsense.
We have thus established that if n is a solution of (x), then n must
be even. So let n = 2%m, where « is a positive integer and m is an odd

positive integer. If m = 1, then n = 2%, in which case equation () gives
2071 2 =20%1 1

b

which is only possible if & = 1, thereby providing the solution n = 2.
On the other hand, if m > 1, it follows from () that

(227 + 2)m = 2" Ym + 2m > 2271 (m) + 2y(m)
= (2°7' — o(m) > (2%~ = 1)m,
which implies that
207ty o> 90t

which is nonsense for any positive integer .
All this proves that the only solution of (¥) is n = 2.

We will show that the numbers n = 32 - 3%+, » = 1,2,3,..., serve our
purpose. To do so, it is enough to show that if n = 32 - 32"+! then

2r+2 _ 1
(%) é(n) +o(n) =16-3*"-2+63 - 5

is indeed a multiple of 36 (= ~(n)?2). Since 36 divides the first term on
the right-hand side of (%) and since 9|63, the only difficulty rests in the

32r+2_q

proof that is a multiple of 4, which boils down to showing that
32r+2 — 1 is divisible by 8. This last claim follows from the fact that

372 =91 =1 (mod 8).
$(n) +o(n)
v(n)?

REMARK: The ten smallest integers n such that

is an integer infinitely many times.

¢(n) +a(n)
v(n)?

ger are 288, 864, 2430, 7776, 27000, 55296, 69984, 82134, 215622 and

432 000.

Since ¢(n) > y/n/2 (see Problem 736), we have 2¢(") > 2v™/2, Since for

x > 9.5, the function 2% — 82?2 is increasing, it follows that for n > 361,

2
ovVn/2 > 8 (?) = 2n.

Hence, the inequality is true provided 1 < n < 360. Using a computer,
we quickly obtain the following values: n =1,2,3,4,6,8,10 and 12.

With MAPLE, we obtain these values by typing in the program (after
having opened the library numtheory, namely by typing the instruction
with(numtheory))

This proves that

is an inte-
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> for to 360 do if evalf(2”phi(n)-2%n)<=0 then print(n)
> else fi; od;
(751) With MAPLE, the program can be written as follows:
> carre:=proc(N::integer)
> local n;
> for n from 1 to N do
> if type(sqrt(return(n)),integer)=true then print(n)
> else fi; od; end:
where the procedure return is

> return:=proc(n::integer)

> local m,s;

> m:=n; s:=0;

> while m<>0 do

> s5:=10*s+irem(m,10);

> m:=iquo(m,10) od; s end:

(752) With MAPLE, the program can be written as follows:

> Niven:=proc(N)

> local n,k,r,s;

> for n from 12476 to N do

> k:=n; r:=0; while k<>0 do

> s:=irem(k,10); r:=s+r; k:=iquo(k,10); od;

> if irem(n,r)=0 then print(n); fi; od; end:

Using this procedure with N = 12645, that is by writing Niven(12645),
we obtain that the Niven numbers n € [12476,12645] are: 12480, 12492,
12495, 12496, 12501, 12504, 12510, 12520, 12525, 12528, 12532, 12540,
12544, 12546, 12558, 12563, 12564, 12570, 12582, 12600, 12610, 12612,
12614, 12615, 12618, 12636.

(753) With MAPLE, the program can be written as follows:

> for n to 1000 do

> if return(n)<>n and return(n”2)=n"2 then

> print(n) else fi; od;

(754) The only Cullen prime number < 1000 is 141, and to establish this result,
we type with MAPLE the program
> for n from 2 to 1000 do
> if isprime(n*2”n+1) then print(n) else fi od;
(755) With MAPLE, the program can be written as follows:

for j from O by 1 to trunc(sqrt(x)) do
value :=i"2+j"2;

> deuxcarres:=proc(x)

> local i,j, value , matable, tab;
> matable:=array(0..x,1..2);

> for i from 0 by 1 to x do

> for j from 1 by 1 to 2 do

> matable[i,j]:=i+j-1; tab[i]:=0;
> od; od;

> for i from 0 by 1 to trunc(sqrt(x)) do
> ji=i;

>

>
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> if (value <x) then tabl[value ]:=1 fi; if (value <x) then
> matable[value ,2]:=i"‘2‘ + jA‘2¢ fi;

> od;

> od;

> print(‘The numbers smaller than‘, x, ‘which can‘);
> print(‘be written as the sum of two squares are:°‘);
> for i from 1 by 1 to x do

> if tab[i]=1 then

> print(i=matable[i,2]);

> fi;

> od;

> end:

>

deuxcarres(30);
We thus obtain the numbers 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25,
26, 29.
(756) With MAPLE, the program can be written as follows:
> Euler:=proc(N)
> local m;
> for m to 3*N do if m<>N and
> phi(m)=phi(N) then print(‘ m‘=m,phi(‘ m‘)=phi(m))
> else fi; od; end:
(757) Using MAPLE, we can write the program as follows:
silv:=proc(N) local n,i,pi;
for n to N do
for i from 2 to trunc(sqrt(N)) do
pi:=ithprime(i);
if isprime(n-pi)=true then print(m,pi,n-pi)
else fi; od; od; end:
silv(25);
Taking N = 25, that is by typing in silv(25), we obtain that 22 and
24 are the only Silverbach numbers < 25.
(758) Using MAPLE, we can write the program as follows:
> for i to 1000 do
> if (ithprime(i)-1)!+1mod(ithprime(i)”2)=0
> then print(ithprime(i)) else fi;od;
In this way, we find the Wilson primes 5, 13 and 563. It is known
that there are no other Wilson primes smaller than 5 - 108.
(759) We have
(a) By definition,
n=1+k Z d=1+k(o(n)—1-n),

dln
l<d<n

VVVVVVYV

an equation which gives after simplification
ko(n)=(k+1)n+k—1.

(b) Dividing both sides of the equation ko(n) = (k+ 1)n+ k& — 1 by k&,
we get the result.

(c) This congruence follows immediately from the definition, since the
expression } -, 1<4<, d is an integer.
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Assume the contrary, that is that p|n with p < k. We then have that
n/p is a proper divisor of n, in which case, using part (b) above, we
have

n n n—1

on)>n+14+— 2n+1+g>n+1+T:J(n),

p
a contradiction.
Assume that there exists a prime number p and integers o > 1 and
k > 2 such that p® is k-hyperperfect. If @« = 1, then we have p =1,
which makes no sense. On the other hand, if & > 2, then

P =1+k(p+p*+-- +p*7h),

which implies that p|1, again a contradiction.
Using the MATHEMATICA program
v={};Doln=2%m+1;If[2*DivisorSigmal[l,n]l==3+n+1,
Print[n]],
{m,1,10"5 }, v=Append[v,n]],{m,1,500000};Print [v]
we find the numbers 21, 2133, 19521 and 176661.
With the MAPLE software, one can type:
> with(numtheory) :
to use the library numtheory which contains the arithmetical func-
tions. Thereafter, we build the following program:
> for n to 1000000 do p(n):=2%c(n)-(3*n+1); if p(n)=0
> then print(n) else fi; od;
Substituting n = 3% - p in 20(n) = 3n + 1, we obtain

3a+1 -1

2———(+1)= 3%tlp +1,
an equation which is easily reduced to
p=3t 2

It follows that if for a certain positive integer «, the number p =
3>+l _ 92 is prime, then the number n = 3% . p is 2-hyperperfect.
Thus, with the program

Do[If[PrimeQ[(p =3"(k+1)-2)],Printlk," ",p," ",

3k xpll,{k,1,30}]
we obtain the following table of 2-hyperperfect numbers:

al|p 3%.p
117 21

3179 2133

4 | 241 19521

5 | 727 176661

8 | 19681 | 129127041

REMARK: In fact, the next number o such that 31 — 2 is prime is
a=21.

Using the MAPLE program
> for k to 50 do if isprime(3A(k+1)-2) then
>print (3Ak#(3A (k+1)-2),
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> ‘is a 2-hyperperfect number‘), else fi; od;

(760) (Chris K. Caldwell: Www.utm.edu/research/primes/notes/proofs/
Theorem3.html). Given a positive integer n, denote by s(n) the sum
of its digits. It is easy to see that s(n) = n (mod 9). Therefore, it is
enough to show that if n is an even perfect number, then n =1 (mod 9).
But it is known that if n is an even perfect number, then there exists a
prime number p (> 2, because n > 6) such that n = 2P~1(2P — 1), where
p=3orp=1 (mod6)or p=>5 (mod 6). Since 26 = 64 = 1 (mod 9),
we have respectively

n=2r"1(2P-1)=23"1(23-1), 2171(2' = 1) and 2571(25—1) (mod 9).

Since each of these three expressions is = 1 (mod 9), the proof is complete.
(761) Using the equality Y ;_, tx = 2 > r_;(k* + k) and the identities of Prob-
lem 1 (a) and (b), we obtain the result.
(762) If n = 0 or n = 1, the result is true. If n > 1, it is enough to show that
|
n + 1 divides (2n)t — (" . Since
nln! n

(2n+1) (2:') =(n+1) (2::11)

and since (n +1,2n + 1) = 1, the result follows.
(763) We must show that Z d = N and that Z d = M. Since

d|M d|N
d<M d<N

dYod = o(M)—M=(2""-1)(p+1)(g+1)—2"pg
d|M

(2Kt —1).3.2k"1. 3.9k _ok(3.2k-1 _1)(3.2F —1)

is an expression which gives, after simplification, 32 - 23*~1 — 2% we have
obtained N. In a similar way, one can show that Z d=M.

d|N
d<N

(764) Assume the contrary, that there exist positive integers z and y such that

zl+1) _,yly+1)
2 2

that is
z(z+1) =4y(y+ 1).
It follows successively that

24+l = 42 +4y+1=(2y+1)%
42 +4x+1+43 = 4(2y+1)%
2z +1)24+3 = 4(2y+1)2=[22y + 1)]%,
3 = [22y+1)% - (2z +1)?,
3 = +2-22-1)dy+2+2z+1),
3 = (dy—2z+1)(4y+2x+3).

This means that the positive integer 4y + 2z + 3 divides 3, which makes
no sense, since 4y + 2z +3 > 9.
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The smallest odd abundant number is 945. To prove that there exist
infinitely many abundant numbers, we first set n = 945m, where m is a
positive integer relatively prime with 2, 3, 5 and 7. Since 945 =33 .5-7,
we have (m,945) = 1 and therefore

o(n) = 0(945)a(m) > 0(945)m = 1920m > 2 - 945m = 2n.

Since m is odd, n is also odd. Finally, since there exist infinitely many
integers m which are relatively prime with 2, 3, 5 and 7, the result follows.
The result is certainly true for n = 1. So let n > 2 and n = ¢7'%q5* - - - g2~
be its representation as a product of distinct prime powers. If d|n, then

d= qf‘qzﬁ2 .- gPr, for some nonnegative integers 3; < a; fori = 1,2,...,7.

Therefore, we have

o(n) 1 1 1
bl S 14+ =4...
- H( ot

i=1

. 1 1 o(d)
> 1+-+-.-4+ = —
) g( P p"i) d

as was to be shown.

Let S be the set of positive integers n such that n|(2" + 1). We will show
that 3* belongs to S for each integer k > 1. We proceed by induction.
First of all, it is clear that 3 € S. Assume that 3* € S and let us show
that 3¥+1 € S. To do so, we must show that 3¥*1|m, where m = 23" +1.
Setting z = 23", we have

m=(23k)3+1=x3+1:(z+1)(w2—x+1).

Using the induction hypothesis, we find that 3¥|(x + 1). Hence, we only
need to prove that 3|(z% — z + 1). Since

c=2"=(-1* =-1 (mod 3),
it follows that
?—r+1=(-1)2—(-1)+1=0 (mod 3),

which establishes that 3¥*1|m and therefore that 3¥*! € S, as required.
REMARKS: The sequence of numbers n such that n|(2™ +1) is the subject
of Problem #16 of the book by Sierpinski [39]. In this problem, the author
also observes that if n € S, then 2" + 1 € S, which serves as a second
way of establishing that S is an infinite set. Let us also mention that it is
obvious that if n € S, then n is odd. Hence, using a computer, one easily
obtains that the 20 first elements of S are 1, 3, 9, 27, 81, 171, 243, 513,
729, 1539, 2187, 3249, 4617, 6561, 9747, 13203, 13851, 19683, 29241 and
39609.

(Contribution of Nicolas Doyon). Let S be the set of positive integers n
such that n|(2" +1). If n € S, the following observations are immediate:
(a) n is odd;

(b) 2" = —1 (mod n);

(c) 22" =1 (mod n);

(d) if @ is the smallest positive integer such that 2* = 1 (mod n), then

afn and a|2n.
Set

a1 Q2

n=q'gy* - qgp* B<g<gp<...<g;a€eNfori=1,2,...,k).
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It follows from (d) that
a=2¢"¢ ¢ (0<Bi<a,fori=1,2... .k B >1).

Let b be the smallest positive integer such that 2° = 1 (mod q;). Then,
since 2271 =1 (mod q;), we have

bla and b|(q; — 1),

so that b|d where d = GCD(a,¢; — 1).

Since a and g; —1 are even, we have d > 2. If an odd number p divides
d, then since it divides a, it follows that p > q;. On the other hand, since
it divides ¢; — 1, it must satisfy p < g1, which is contradictory. It follows
that d is a power of 2; because 4 does not divide a, it follows that d = 2.

Hence, since b2, we have b = 1 or b = 2. If b = 1, then 2 = 1
(mod ¢ ), which is impossible. Therefore, we must have b = 2, in which
case 22 = 1 (mod q;), which implies that ¢; = 3. We may thus conclude
that n is a multiple of 3.
It is enough to show that the equation 4™ = p* — 1 has no solutions in
integers n > 2, k > 2, p an odd prime. We shall examine separately the
cases “k even” and “k odd”.

First of all, if k is even, we have

"= =) + 1),
so that there exist integers 7 > s > 0 such that
P2 1 =28, P 1=2,
in which case, by subtracting the first equation from the second, we find
m— 28 =2, that is 2771 — 2571 =1,

which is nonsense.
On the other hand, if k is odd (and therefore > 3), we have

' =p-0E +p" P p ),
so that there exist two integers » > s > 0 such that
p—1=2°, p T apt Tt pr1=2,
in which case, by subtracting the first equation from the second, we find

pk—1+pk—2+”.+p2+2 — 27‘_23’
P p+l) = 2202

Since this last equation makes no sense, its left-hand side being an odd
number while its right-hand side is an even number, the result follows.
The answer is NO. Indeed, assume that q; and g2 are two distinct prime
numbers such that p|29* — 1 and p|292 — 1 for a certain prime number p.
Let r be the smallest positive integer such that 2" =1 (mod p). It follows
that r|q1, so that » = 1 or » = ¢;. Since r > 1, we have that r = ¢;.
Similarly, we obtain that r = go, so that q; = ¢o, thereby contradicting
our assumption.



282 1001 PROBLEMS IN CLASSICAL NUMBER THEORY

(771) We use the following MATHEMATICA program:

r=1; n=2; While[s =DivisorSigmall,nl/n; (r<2)|I1(s<2),
(n++;7r=s)1; Print[n—1," ",n]

We then obtain n — 1 = 5775 and n = 5776 as the required numbers.

With MAPLE, the following program will do:

> with(numtheory) :

> for n from 2 to 10000 do if sigma(n-1)/(n-1)>=2
> and sigma(n)/n>=2 then print(n-1,n) else fi; od;
which yields the pair (5775,5776).

To find the three smallest nondeficient consecutive numbers, we may
write a similar program with MATHEMATICA, for instance:
r=1; s=1; n=3; While[t =DivisorSigmal[l,n]/n;
<2<t <2),(n++;r=s5;5=1)1;
Print[n—2," ",n—1," ",n]

We then obtain n — 2 = 171078830, n — 1 = 171078831 and n =
171078 832 for the required numbers.

For the third part of the problem, we first observe that

0209813 (3)-

and that

1 1 1
<1+g) (1+7)"'(1+ﬁ> —2.00097... > 2.

We then set p., = p2 =3 and p,, = p11 = 31.
Then let p,, be the smallest prime number such that

1
(HL) (H_)...(HL) > 9.
P12 D13 Drs

More generally, for each positive integer i < k, having determined p,,, we
set pr,,, as the smallest prime number such that

1 1 1
(1+ )(1+ )-~-(1+ )zz
Dri+1 Dri+2 p’r‘i+1

This process has no end since [],(1 + 1/p) diverges (see Theorem 16).

Hence, since for each divisor d of a positive integer m, we have o(m)/m
> o(d)/d (see Problem 766), we only need to find a positive integer n
satisfying the system of congruences

n=0 (mod p1p3),
n=-1 (mod p3---p11),
= - (mOd p12"‘pr3)7

n=-k+1 (modpr,_ 41 Pr,)-

By the Chinese Remainder Theorem, the above system of congruences has
a solution n. Summarizing, the nature of the congruences of this system
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and the fact that o(n)/n > o(d)/d if d|n guarantees that

@ > o(pip2) —9

n. - pip2 ’
o(n+1) S o(p3ps---p11) > 9
n+l = pipe-opun )

U(n+k—1) > U(prk_1+1"'prk)
n+k_1 N ka‘1+1”'ka

>2

)

thereby producing k consecutive nondeficient numbers.

2
(772) We already know that 0(120) = 3 so that, since o(m)/m > o(d)/d when
d|m (see Problem 766), we have
a(120m) S 0(120)
120m — 120
On the other hand, since

1 1 1

it is enough to find a positive integer n such that

n=0 (mod 120),
n=-1 (mod7-11---743).

=3 (m=1,2,...).

Using the Chinese Remainder Theorem, we may therefore conclude that
such a number n exists (even if it is certainly very large), as was to be
shown.
(773) First observe that, for each prime number ¢ and positive integer «,
o(q®) 1 1 1 1 1 q
(1) —=l4+-+ s+t =<1l+-F 5+ =——.
q* q ¢ q* q ¢ g-1
Therefore, for each integer n > 1, written in its canonical form n =

] 2

q7'gs? - - - q2r, it follows from (1) that

a(n)r<11 1>T(11>
2 — = I+ —4+ 5+ +=%]< 1+ =+ 5+
T
_ 4di
il

Now, if n is tri-perfect, @ = 3, in which case (2) implies that

r

(3) quj>3

=1

which can only take place if the left-hand side of (3) has at least eight
prime factors, this minimum being attained when

{CI1,Q2, e ,qB} = {3,5, 7, 11, 13, 17, 19,23}
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We only need to verify that the (3) = 6 pairs of elements of A satisfy the
stated property. Therefore, since ab + 1 = ¢? for a certain integer c, we
have

a-(a+b+2vVab+1)+1=a’+ab+2ac+1
=a’+c®—1+2ac+1=(a+c)?

as required. The five other pairs can easily be handled. Finally, setting
a=1,b=3, we obtain A = {1,3,8,120}; to a = 2, b = 4 corresponds the
set A = {2,4,12,420}.

REMARK: This result was obtained by Euler. For an extensive study of
this problem, see L. Jones [21].

Let n be such an integer; then there exists a positive integer m such that
n = (m —1)m = m? — m. We then have n + m = m2, so that we have
successively

vnt+m=m, \/n+vVn+m=m, \/n+\/n+\/n+m:m,

and so on. It follows that

Jrr s o=

as required.
We use induction. First of all, the result is true for n = 2, since Fy F3 —
F2=1-2—-12=1=(-1)2. Assuming that the identity is true for n = k,
that is that

Fy_1Fyy1 — FZ = (1)K,

we will prove that it is also true for n = k + 1. Using the induction
hypothesis, we have successively

Fo 1+ F, = Fiqa,
Fy1Fi1 + FyFrp1n = FRq,
Fy1Fer1 — (-1)* + FeFrpn = FRq+ (1),
Fl 4+ FiFep — F2y = (DR,
Fe(Fi + Fer1) = FRyy = (-1,
FyFeya — Ffyy = (-1,

as required.

There are (‘21) = 6 verifications to be made. We will show only two, namely
that Fy,F5,4+2 and that F5,F5,.4 are both squares. First of all, from
the Cassiny identity (see Problem 776), we have Fy, Fo, o —(—1)%"*! =
F}..1, and therefore Fp, Fonyo +1 = F3,,,, proving our claim.
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On the other hand, again calling upon the Cassiny identity, we have
FonFonta+1 = Fon(Fongz + Fonyo) + 1= FopnFonisz + FopnFonia +1
= Fon(Fani2 + Fony1) + FonFonia +1
= 2FonFonto + FanFony1 +1
= 2(Fpy1 — 1) + FonFont1 + 1
= Fy1+Fp1 + FonFongr — 1
= F} 1+ Font1Font2 — 1 = Fopi1(Font1 + Fany2) — 1
= Fonp1Fonys —1=F3, 9,
as required.
The choice k£ = n(n + 3)/2 implies that
n(n+1)(n+2)(n+3) k(k+1)

8 2

which proves the result.

By Dirichlet’s Theorem, any arithmetic progression an + b, where (a,b) =
1, contains infinitely many primes. So let a = 10000 and b = 7777.
Clearly, (a,b) = 1. Hence, there exist infinitely many prime numbers of
the form

(%) 10000n + 7777,

which proves our claim. Using a computer, we easily find that the smallest
five prime numbers of the form (x) are 47777, 67777, 97777, 107 777 and
137777.

With a computer, we find the numbers 111, 11112 and 1122112. Let S
be the set of numbers with this property. First of all, since it is easy to
see that 9|111111111, it is clear that this last number belongs to S. In
fact, using a computer, we observe that 111111111 is the fourth smallest
element of S, while the fifth one is 122121216. Finally, setting ng =
1122112, we find that the number

11...1-10" +np=11...11122112
S ——
16 16

also belongs to S.

REMARK: For an extended study of these numbers, one may consult the
paper of J.M. De Koninck and N. Doyon [6].

To show that the composite number n is a Carmichael number, it is enough
to show that

" '=1 (modn), for each positive integer b such that (b,n) = 1.

But, if we assume that ¢(n) is a proper divisor of n — 1, there exists a
positive integer r such that n — 1 = r¢(n). We then have

pn—l — pré(n) — (bd’(n))r =1"=1 (mod n),

and the result follows.
If n = dids - - - d, satisfies the equation

(%) n=di+dj+dj+ - +d,
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then
n=di+di+ - +dl <9I+ 4 49
:9(1+9+~-+9T—1)=g(gT—n.

On the other hand, since n > 10", we must have
9
10! < g(9" - 1),

an inequality which holds only if » > 23. Hence, any number satisfying
(*) must be smaller than 10%2.

Using a computer, we find that the numbers 89, 135, 175, 518, 598,
1306, 1676 and 2427 satisfy (x).
If n = didy - - d, satisfies the equation
(%) n=dj+dy "t +dy? 4 +d,
then

n=10"""dy + 10" %dy + - -+ + 10d,_1 + d,
=dj+dy ' +dy i+ 4+ d2 +d,
in which case
0=d (1077 —d]™ ) +da(1072 —d52) 4+ -+ +dp_1(10 — dp_1) > 0,
a contradiction. Hence, there exist no integers n satisfying (x).
Let n = 2%, where « is a positive integer. Since
on)+1=2"1 _14+1=2.2%=2n,
the sequence of powers of 2 provides infinitely many solutions to the equa-
tion o(n) =2n — 1.
REMARK: Besides the numbers n = 2%, a = 1,2,..., no other solution
of the equation o(n) = 2n — 1 is known. Also, no number n such that
o(n) =2n+ 1 is known.
(Contribution of Claude Levesque, Québec). Let q|n? + n 4 1, ¢ an odd
prime number. Then,
4gl4(n® +n+1) = (2n+1)* + 3,

which implies that g|(2n+1)%+3, so that the congruence 22 = —3 (mod q)
is solvable. We have thus proved that

-3
1 — | =1
® (7)
Then, using the law of quadratic reciprocity, we have
-3 -1 3 -1\ /q a=1.3-1
2 _ fmad —_ — = e — = —1 2 2
? <q> (q>(q> (q>(3)( )
= (DT (- (1) = (¢
=EDEEDE (3) (5):

We want to prove that ¢ = 1 (mod 3). Assume that this is not the case.
Since n? + n + 1 # 0 (mod 3), it means that ¢ = 2 (mod 3), in which

case (%) = —1, which implies, in light of (2), that (‘73) = —1, thus
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contradicting (1). This proves that we must have ¢ = 1 (mod 3), as was
to be shown.

(Sierpinski [39], Problem #176) There is only one, namely =z = 3. Setting
x =t+3, (%) is reduced to

() 2t(t* + 9t + 21) = 0.

Since the quadratic polynomial ¢ 4+ 9t 4+ 21 has no real roots, the only
solution of (#x) is t = 0. It follows that the only solution of () is = 3.
Assume that such a solution {z,y} exists. Since 9|117, we must have that
9|z3 + 5, which is impossible, since z3 +5=4,5,6 (mod 9).
REMARK: In his book [32], Joe Roberts makes the following interesting
observation:
In the chapter “Diophantine Equations: p-adic Methods” in
Studies in Number Theory, [22] D.J. Lewis states on page 26
that “The equation x3 — 117y = 5 is known to have at most 18
integral solutions but the exact number is not known.” Finkel-
stein and London (1971) [12] made use of the field Q(¥/117),
where the cube root is real, to show that, in fact, the equa-
tion has no solutions in integers. Halter-Koch (1973) [17] and
Udrescu (1973) [33] independently observed that by considering
the equation modulo 9 we get 3 =5 (mod 9) and this congru-
ence clearly has no solutions. Consequently we immediately see
that the equation has no solutions.
It is important to make sure that each of the terms (...)3 is positive. To
do so, if we take a > 3 and b = a + 1, it is easy to see that each of the
four expressions (...) is positive. Since the Ramanujan identity holds for
each integer a > 3, the first result is proved. On the other hand, to find
the “double” representation of 1729, we first set a = 3 and b = 4 in (%),
in which case we obtain

7 + 843 = 63% + 70°.

Dividing each of the four terms of this last identity by 72, we obtain the
double representation of 1729 noticed by Ramanujan.
If az + by = b+ c is solvable, then d = (a,b)|(b + ¢). Since d|b, it follows
that d|c, which implies that az + by = ¢ is solvable. The other implication
can be handled in a similar manner.
We know that az + by = c is solvable if and only if d = (a, b)|c, which is
equivalent to d|(a, b, ¢). This shows that (a,b) = (a,b, c).
Since (a,b) = 1, there exist integers z* and y* such that az* + by* = 1.
The solutions of ax 4+ by = n are then given by £ = nz* — bk and y =
ny* +ak, where az* + by* = 1. Hence, the equation has positive solutions
if na* — bk > 0 and ny* + ak > 0, that is if
Yo k<l

b
To show that there exists at least one such a value of k, we only need to
show that

—yn+1<x

*n

b b
an inequality which is equivalent to n(az* + by*) > ab, that is n > ab.
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Finally, if n = ab, then —y*b < k < z*a; and since ax™ + by* =1, we
obtain az* — 1 < k < azx*, which is impossible.
The solution is x = 19, y = 11, z = 70. Indeed, if we multiply the first
equation by 2 and subtract this new equation from the second one, we
obtain

(x) 30y — 19z = —1000.

Reducing modulo 19, we obtain 11y = 7 (mod 19) and therefore (multi-
plying by 7) we have

y=11 (mod 19) thatis y=11+19%, ke Z.

Substituting this value in (%), we find z = 70430k and finally x = 19—49k.
For these solutions to be positive, we must choose k = 0, which gives the
solution stated above.

(Marco Carmosini, Queen’s University, Canadian Congress of Students in
Mathematics, May 1999). If P and A stand respectively for the perime-
ter and the area of such a triangle, then using Heron’s formula A =

\/g (£ —a) (£ —b) (£ —c) where P = a + b+ c, we are led to the
equation

at+b+c —a+b+c a—-b+c a+b—c
that is

(%) 16(a+b+c)=(—a+b+c)(a—b+c)(la+b—c).

Since the left-hand side of (*) is even, it follows that (—a + b+ ¢) or
(a—b+c) or (a+b—c) must be even. It is easy to see that if any of these
three quantities is even, each of the other two will also be even. It follows
that there exist three integers m < n < k such that

—a+b+c=2m, a—b+c=2n, a+b—c=2k,
so that
a=n+k, b=m+k, c=m+n.
Substituting these values in (), we obtain that
mnk = 4(m +n + k).
We will treat separately the following four cases:
m=1, m=2, m =3, m > 4.

If m = 1, we obtain successively nk = 4(1 + n + k), nk — 4n — 4k = 4,
nk —4n — 4k + 16 = 4+ 16 and (n — 4)(k — 4) = 20, in which case
the only possible values of (n, k) are (n, k) = (5,24), (6,14) and (8,9). To
these values correspond the three triangles whose sides a, b, ¢ are (a, b, c) =
(20,15,7), (17,10,9) and (29, 25, 6).

In the case m = 2, we have 2nk = 4(2+n+k); that is (n—2)(k—2) =
8, which gives the only possible values (n,k) = (3,10) and (4,6), thus
yielding the two triangles of lengths a,b, ¢ given by (a,b,c) = (13,12,5)
and (10,8, 6).
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In the case m = 3, we obtain successively 3nk = 4(3+n + k), (3n —
4)(3k—4) = 52, and hence the pair (n, k) = (2, 10), which must be rejected
sincen=2<4=m.

It remains to consider the case m > 4. Let us assume that there exists
a solution (m,n, k), with m > 4, to the equation mnk = 4(m + n + k).
We would then successively have

4
At AR ntk>nk—d4, k< —"— 41  foralln >4,
nk —4 n—1
In particular, we would have
k§%+1:§<3, and therefore 4 <m <n <k < 3,

a contradiction.
To sum up, the only solutions (a, b, c) are given by the five triples

(13,12,5), (10,8,6), (29,25,6), (20,15,7), (17,10,9).

(794) There are none. Indeed, if z,y is a solution, since z is not a multiple of
3, then z2 = 1 (mod 3), in which case z2 + 3y = 1 (mod 3), while 5 = 2
(mod 3).

(795) We may assume that 2 + y?2 = 22. We proceed by contradiction by
assuming that zyz # 0 (mod 5), in which case z2,42,2% = 1,4 (mod 5).
The only three possible values modulo 5 of x? + y? are therefore 1 + 1,
1+ 4 and 4 + 4, that is 2, 0 and 3 modulo 5, while we should have 1 or 4.

(796) If z > 1, then using the first equation, we have that y < 1, which in turn
implies that z > 1. But “x > 1, z > 1” contradicts the third equation.
Hence, x < 1. By a similar argument, one can show that z > 1. Hence,
z = 1. We can then do the same reasoning with each unknown, allowing
us to conclude that z =y =2 = 1.

(797) (TYCM, Vol. 13, 1982, p. 263). Assume that there exist nonnegative
integers =z and y such that ax + by = ab — a — b. In this case, we have
a(z+1) = b(a—y—1). Since a and b are relatively prime, it is clear that

blz +1 and ala—y—1,

which implies that a|y + 1. Hence, y +1 > a, z + 1 > b and therefore
ab = (z + 1)a + (y + 1)b > 2ab, which is impossible, since a and b are
positive.

(798) We know that the solutions of n = ax + by are of the form z = zo+bt, y =
yo — at, where axo +byo = n, t € Z. We must choose ¢ so that yo —at > 0
and zo+bt > 0, which is equivalent to —(zo/b) <t < (yo/a). The number
of solutions is therefore [yo/a] — [—zo/b], and since [a] — [b] = [a — b] or
[@ — b] + 1, we obtain the result.

(799) Say Peter has paid $1.04. The only way this can happen is if Peter has
bought z apples and y oranges, with z and y such that 5z + 7Ty = 104.
We can express this situation as (z,y) = (2o, yo) = (4,12). All the integer
solutions of 5z + Ty = 104 are given by x = o+ 7t =4+ 7t and y =
yo — 5t = 12 — 5¢. Since we must have 4 + 7t > 0 (that is ¢ > —4/7)
and 12 — 5t > 0 (that is ¢t < 12/5), it follows that 0 < ¢ < 2. The
only three suitable values of ¢ are therefore 0, 1 and 2. Since Peter’s
purchase corresponds to the value t = 0, Paul’s purchase must necessarily
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correspond tot = 1 or to ¢t =2, that is z = 11 and y = 7 or z = 18 and
y = 2. Since by hypothesis y > 3, we may conclude that Paul has bought
11 apples and 7 oranges.

First of all, since (3,7) = 1|11, the given Diophantine equation has integer
solutions. We easily establish that (zg,y0) = (6,—1) is a particular solu-
tion of this Diophantine equation. The set of all the solutions is therefore
given by

z=6+4Tt, y=—1-—3t, where t € Z.

The solutions located in the second quadrant are those corresponding to
the points {x, y) satisfying
r=6+T7Tt<0 and y=-1-3t>0,

that is when t < —g and t < —%. This means that we must have t < —1.
The set A of integer points (z,y) which are solutions of 3z + 7y = 11 and
which are located in the second quadrant is therefore given by

A={(z,y):z=6+T7t and y = —1 — 3t, where t = —-1,—-2,-3,...}.

We first establish that (zg,y0) = (5, —2) is a particular solution of this
equation. This point generates the solutions

T =05+ Tt, y = —2 — bt, where t € Z.

Since we are interested in the points (z,y) such that y > z, we need to
establish the integer values of ¢ for which

—2-5t>5+7t, thatis t<-7/12,
which is only possible if ¢t < —1. The required set F is therefore
E={(z,y):z=5+Ttand y = —2 — 5¢, where t = —1,-2,-3,...}.

Taking ¢t = 0, we obtain that (z,y) = (5,1) is a solution of (). Choosing
t = 1, we obtain the solution (z,y) = (1,—2). These two solutions give
rise to the system

5a+b=11,
a—2b=11,
a solution of which is @ = 3 and b = —4, which produces the required

numbers a and b.
Since (z,y,%) = 1, we have (z,y) = (z,2) = (y,2) = 1, and therefore
only one of the terms x, y and z can be even. If z is even, then 22 = 0
(mod 4). The fact that z is even implies that y and 2 are both odd and
22 — 3y? = 2 (mod 4). It follows that  must be odd and that y or z is
even.

I) If y is even, then (z + z,z — ) = 2 and therefore z + x = 2u and
z — x = 2v, where (u,v) = 1. We then have 3y? = (z — z)(z + z) = 4uv.
Hence, (y/2)? = uv/3, and since (u,v) = 1, we may assume that 3|u, so
that there exists a positive integer m such that v = 3m. It follows that
there exist positive integers r and s such that v = r? and m = s?, in which
case

z+z 2 zZ—z 2

> =u=3m=3s and 5 =y =7
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We easily see that in this case, we must have

(r,s)=1, s>r3fr, y=2rs, x=3s°—1r% z=3s>+47r%

IT) If 2 is even, then (2 +z,z — z) = 1, in which case for r and s odd
and (r,s) =1, s>r,3/r, we have

352 —r? 352 +r?
y = TS, Tr = _—, =
2 2
(Sierpinski [39], Problem #170). We begin with the identity
(+) (@+y+2)° - @+’ +2%) =3 +y)(+2)(y+2).

It follows that if x, y and z are integers such that z + y + 2 = 3 and
z3 + 93 + 2% = 3, then, by (x), we have

(%) 8=(r+y)lz+2)(y+2)=0CB-7)B—-y)(3-2),
so that, in light of x + y + z = 3, we have
(% % %) 8=03-2)3—-y)(3—2).

Relation (x % %) implies that either the three numbers 3 —z, 3 —y, 3 — 2
are even or else only one of the three is even. In the first case, in light of
(xx), they are all in absolute value equal to 2; therefore, by (x * %), they
are equal to 2, in which case £ = y = z = 1. In the second case, in light
of (*x), one of the numbers 3 —x, 3 —y, 3 — z is in absolute value equal to
8, while the others are in absolute value equal to 1; thus, by (%), one of
the two is equal to 8, while the others are equal to —1. This finally yields
zr=-bandy=z2=4,orx=y=4and z=-5orx=4,y=-5and
z = 4. We can therefore conclude that the system of equations has only
four integer solutions, namely (1,1,1), (—5,4,4), (4, —5,4) and (4,4, —5).

We only need to consider, for each positive integer n, the triples {z, y, z},
where
r = n%n+1)8,
= n'(n+1)5,
— 4 3
z = n*(n+1)°.

Consider the equation 5z + 7y = 136. Reducing this equation modulo 5,
we obtain y = 3+ 5k. Substituting in the equation, we obtain x = 23 —7k.
The condition “z > 0 and y > 0” allows us to conclude that solutions are
possible for £ = 0,1,2,3, that is 136 = 115+ 21 = 80 4+ 56 = 45 + 91 =
10 + 126.

Setting x =a—7, y = a and z = a +r, we find the equation 2% + y* = z
becomes a(a — 4r) = 0. Hence, a = 4r and therefore z = 3r, y = 4r and
z = br, where r € N.

Setting r = 16 and s = 5 in Theorem 34, we obtain z = 281, y = 160 and
z = 231.

Since 3|zy and 4|zy, we have that 12|zyz. Hence, we only need to show
that 5|zyz. We first observe that if 5 fm, then m = 5k +1 or m = 5k +2,
for a certain integer k. In the first case, m? = 5(5k% & 2k) + 1 and in
the second case, m? = 5(5k? + 4k) + 4. Using this observation, we see
that if none of the numbers z,y, z are divisible by 5, then z? + y? gives,
after dividing by 5, the remainders 2, 3 or 0. Since 22 + y? = 22, the first

2
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two cases are clearly impossible. The only possibility is the third one, in
which case 22 is divisible by 5, so that z is divisible by 5.

Since z = r? — 52, y = 2rs and z = 2 + s2, we have s(r — s) = 6. Solving
for s, we find

r+vr2-24

—

Hence, in order for s to exist, we must have 72 > 24, in which case
V72 — 24 is an integer. Therefore, there exists an integer u such that
r2 — 24 = 42, in which case

(r—u)(r+u)=24=1.24=2-12=3.8=4-6.

S =

From this, we derive the values » = 7 and » = 5. We thus obtain the
Pythagorean triples (20, 21, 29), (16,30, 34), (13, 84, 85) and (48, 14, 50).
The equations 2 + y? = 22 and = + y + z = zy allow us to obtain the
equation (z — 2)(y —2) = 2. Hence, z = 3, y = 4 and z = 5 are the
dimensions of the required triangle.

The relation (n —1)? +n? = (n+ 1)? implies that n? = 4n; that is n = 4.
Whatever the parity of n, the left-hand side is always odd, while the
right-hand side is always even, a contradiction.

Since 22,92 = 0,1 (mod 4), we have z2+y? # 3 (mod 4), while 4247 =3
(mod 4).

First observe that the primitive solutions of 22 + y? = (22)? are given
by z =72 — 5%, y = 2rs and 22 = r?2 + s, withr > s > 0, (r,8) = 1,
r,s of opposite parity. Since the primitive solutions of 22 = r? + s2
are in turn given by r = m? —n?, s = 2mn and z = m? + n?, with
m >n >0, (m,n) = 1, m,n of opposite parity, we may conclude that
all primitive solutions of z? + y? = 2% are given by y = 4mn(m? — n?),
z =m*+n*-6m?n? and z = m? +n?, withm >n >0, (m,n) =1, m,n
of opposite parity.

First of all, it is clear that (zg,yo) = (2, —1) is a solution of the Diophan-
tine equation x +y = 1. All the integer solutions (z,y) of the equation
are therefore given by

=2+t y=-1-t (t€2Z).

Hence, we are looking for the values of z and y such that z2 4+ y? < 9.
But

2+t =242+ (-1 -t)2 =2t + 6t +5.
This means that we must have

2% +6t+5<9,

an inequality which is verified for the integers t = —3, -2, —1,0, yielding
the integer solutions

(-1,2), (0,1), (1,0), (2,-1).

First observe that 3136 = 562. We are therefore looking for the primitive
solutions of

(%) z? 4 56% = 22.
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Since all the primitive solutions of X2 + Y2 = Z? are given by
X=r*—s% Y=2rs Z=r>+5s%

where r > s > 0, (r,s) = 1, r,s of opposite parity, we must look for

integers r and s such that

(%%) Y =56 = 2rs, where r > s > 0,(r,s) = 1, r, s of opposite parity.

Hence, we only need to search for the solutions of (xx). There are
two of them, namely (r,s) = (28,1) and (r,s) = (7,4), these in turn
giving rise to the solutions (X,Y,Z) = (z,56,z) = (783,56,785) and
(X,Y,Z) = (z,56,2) = (33,56, 65).

Comparing the geometric mean with the arithmetic mean (see Theorem 5)
we have, for any positive real numbers z and y,

2% + 3 2. 2\1/2 2 .2
———2———2(:6 y?)Y/? = 2y, and therefore 2% + y% > 2zy.

Hence, we cannot have 22 + y? = zy unless * = y = 0. This is why the
only integer solution of z% + y2 = zy is (z,y) = (0,0).
It is obvious that x must be even. Setting x = 2u, we have

2u% +y? =222

It is then clear that y must be even, in which case setting y = 2v, we

obtain

u? + 202 =22

Reducing modulo 4, we see that v must be even. Setting v = 2w, we then

have

u? + 8w? = 22,

This equation has infinitely many solutions for each fixed value of u. In-

deed, w = v and z = 3u is a solution for each positive integer u. Moreover,
for each solution of (x) we can write

8uw? +u? = (3w —a)?,
for some integer a. Thus, we have
w=3axv8a%+ u?
Since w; = u is a solution, it follows that
we = 3u + \/m = 6u
is also a solution. Other solutions are given by
w3 = 35 u,
wy = 204 u,
and more generally by
Wp =6 Wp_1 — Wn_3.

To find all the solutions for a fixed u, we only need to search for the
solutions such that w is between 0 and w inclusively and then to iterate
from these solutions.
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(Contribution of John Brillhart, Arizona). Let a, b, ¢ be the lengths of the
three sides of the required triangle and let & and 2« be the angles opposite
to the sides a and b. Calling upon the law of sines and thereafter to the
law of cosines, we obtain successively

b sin2a 2sinacosa b2+ 2 —a?
- = — = - =2cosqa= ————,
a sin « sin o be
so that
e = ab®+ac® —dd,
blc—bla = a(c® —d?),
V(c—a) = a(c*—a?),
b* = a(c+a), sincec#a.

It is clear that the choice a = 4, ¢ = 5, b = 6 serves our purpose.
It is easy to check that the only solution is x = 1 and y = 3. As for the
other equation, it has no integer solution.

x\* /v\?
Since X? +Y? = Z? implies (—Z—> + (E) =1, we have

X 2rs Y r2-42

TTZ ey VYT 7T e

Dividing the numerator and the denominator by r2, we obtain by setting
t=s/r,

2 o 1-¢
Tl YT iy

Let y=2rs =24,s0that rs =12=12-1=6-2 = 4-3. We thus find
(r,s) =(12,1) = (6,2) = (4, 3), and this is why the primitive Pythagorean
triangles are obtained when (r,s) = (12,1) and (r, s) = (4, 3).

Assume that z, y and z is a primitive solution of x? + y? = 22. Hence,
x =12 — 5% y=2ts and z = t? + 52, so that letting A be the area of the
triangle and letting r be the radius of the inscribed circle, we have

0<t<1.

2

ry rx ry rz
A=5 =5ttty
and therefore

ry 2ts(t? — s?)
z+y+z  2s+ (t2 — %) + (t2 + s2)

= = s(t — s),

an integer.

One only needs to reduce the equation modulo 8, thereby obtaining a
contradiction.

We will show that at least two of the numbers z, y, z must be even. Assume
the contrary, that is that the three numbers z,y, z are odd. Then t2 is a
number of the form 8% + 3 and therefore must be odd, which contradicts
the fact that t is even. If only one of the numbers x,y, z is even, the sum
2% 4+ 4?4+ 22 = t? is of the form 4k +2, which is impossible since the square
of an even number must be of the form 4k.
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If (z,y) = (y,2) = (x,2) = 1, then z and z are odd and y is even. Set
z—x = 2u, 2+ = 2vu, where (u,v) = 1 and u and v are of opposite
parity. Substituting in the equation, we find that ¥? = 2uv. Assuming
that u is even, set u = 2M, that is y? = 4Mwv, in which case we must have
that M = r? and v = s2, (r,s) = 1. By substitution, we obtain y = 2rs,
z=152+2r? and z = s? — 2r2, with (r,s) = 1.

(AMM, Vol. 65, 1958, p. 48). The first equation becomes

(a—b—c)(a2+(b—c)2+ab+bc+ca) = 0.

Since a% + (b —c)2 +ab + bc + ca # 0 (because a,b,c > 0), we have
a—b—c = 0, which implies that a = b + ¢ = a?/2 and allows us to
conclude that a =2 and b=c=1.

(AMM, Vol. 73, 1966, p. 895). Multiplying the equation of the statement
by 4 and adding 1, we obtain

4ot + 4% + 42 440+ 1= (29 + 1)°

For x = —1, we find y = —1 or 0; for £ = 0, we find y = —1 or 0; for
x =2, we find y = —6 or 5; finally, for x = 1, y is not an integer. On
the other hand, for z < —1 or x > 2, the left-hand side of the above
equation is larger than (222 + z)? but smaller than (222 + z + 1)? and
therefore cannot be the square of an integer for integer values of x, while
the right-hand side is the square of an integer for all integer values of y.
It follows that the six solutions listed above are the only integer solutions
of the given equation.

(AMM, Vol. 75, 1968, p. 193). If 22 + ry? = p, then 22 = —ry? (mod p)
and therefore —ry?; that is —r is a quadratic residue of p. Hence, the

required prime number must satisfy <—7r> =1 for 1 <r < 10. This will

be satisfied if —1,2,3,5 and 7 are quadratic residues of p. It follows that
the congruences p = 1 (mod 8),p = 1 (mod 3),p = 1 or —1 (mod 5),
and p=1,2, or 4 (mod 7). The required prime number p must therefore
satisfy

p=1,121,169, 289,361 or 520 (mod 840),

and this is why the smallest prime number satisfying the conditions is
p = 1009. We have therefore obtained

1009 = 152+4282=192+2-182=312+3-42=152+4-142
= 1774+5-122=252+6-82=12+7-122 =192 + 8- 92
282 +9.52 =32410- 10

(AMM, Vol. 75, 1968, p. 685). Setting x =a+3d,y=a+4d, z=a+5d
and w = a+6d, we find the given equation becomes a(a?+9ad+21d?) = 0.
The only integer solution a of this equation is ¢ = 0, and therefore the
only solution {z,y, z,w} of the given equation is {3d, 4d, 5d, 6d}.

We have 11 = 1 +6n(n+2), n > 1, and therefore z,,41 = (n+2)3 —n3.
Hence, if 2,4 is a cube, say A3, then we have 2,,,1 = A3 = (n42)3 —n3.
Since no integer satisfies such an equation, the result is proved.
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(833) (AMM, Vol. 85, 1978, p. 118). Assume that there exists a solution
{z,y,n}. Since
gt =y 1= (-1 +y" T+ 4 ),
it is clear that any prime divisor p of y—1 divides z, and since (z,n+1) = 1,
we have pf(n + 1). Since y =1 (mod y — 1), it follows that
I+y+y2+-+y"=n+1 (mody—1)
and therefore that the numbers y — 1 and 1 +y + - -- + y™ are relatively
prime. Hence, we may write
et =@y-DA+y+---+y"),
which implies that 1 +y + --- + y™ is an n-th power of an integer. But
this is impossible since
Yy <l4y+-+yt <+

(834) (AMM, Vol. 87, 1980, p. 138). If the exponent of 3 is not zero, it is easy
to see that none of these equations are solvable modulo 3.

(835) (AMM, Vol. 76, 1969, p. 308). If < y < z, then 4* +4Y 4 47 is a perfect
square under the condition that there exists a positive integer m and a
positive odd integer ¢ such that

14+4Y7% 4+ 4777 = (1 +2™t)%

Therefore,
(%) A1+ 477Y) = 2m (1 + 2™ N,
so that we must have m = 2y — 22z — 1. Substituting this value in (x), we
obtain
t—1 = 4y—z—1(4z—2y+m+l _ t2)

4y—z—1(2z—2y+z+1 + t)(2z—2y+w+l _ t)

Since t is odd, this last equation is possible when ¢ = 1, and consequently
z = 2y —x — 1. Therefore, the only integer solutions are {z,y, 2y —z — 1},

with arbitrary z and y. Finally, these values produce the square (2% +
22y—z—1)2'

(836) (AMM, Vol. 76, 1969, p. 84). Setting a = 3d, ¢ = 2b — 3d, we obtain
z + y = 3b, and the second equation boils down to

(z —y)? = (b—8d)? — 40d?,
of which a solution is given by
r—y=m?—-10n%, b—8d=m?+10n%, d=mn,

where m,n € N. Hence, the solutions are: a = 3d, b = 8d + m? + 10n?,
c=2b-3d, z = 12d + 2m? + 10n2, y = 12d + m? + 20n2. To obtain
infinitely many solutions when a, b, ¢ are in arithmetic progression, it is
enough to choose

a=3mn, b=m?+8mn+10n%, c¢=2m?+ 13mn+ 20n?
and

z=2m?+12mn + 10n?, y=m? + 12mn + 20n>.
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(AMM, Vol. 83, 1976, p. 569). First consider the equation (x), (2% +
y) = y™*L. If m = 0, the solutions are z = 0 and y arbitrary. If m > 1,
the solutions are given by z = b(b™ — 1), y = b*(b™ — 1), where b € Z. It
is easy to verify that these are indeed solutions. Let (z,y) be a nontrivial
solution; that is xy # 0. Then, we can write = ac, y = bc where a and
b are relatively prime and a > 1. From (), we derive

a™(a*c+b) = b

This implies a = 1 and ¢ = b(b™ — 1), hence the solutions z and y. The
only solutions are therefore (m,xz,y) = (0,0,y) where y is arbitrary, and
(m,z,y) = (m,b(d™ — 1),b2(b™ — 1)), where m > 1 and b € Z.

Let us now examine the equation (x#), 2™ (22 +y?) = y™*l. If m = 0,
we have the only solution z =0, y = 1. If m > 1, we only have the trivial
solution z = y = 0. Indeed, assume that there exists a nontrivial solution
(z,y). Then zy # 0, and we write again £ = ac, y = be, where a and b
are relatively prime and a > 1. From (%) we derive

a™c(a® +b%) = L
This implies a = 1, so that 1 + b? divides b™*1. Since b # 0, we obtain
a contradiction. The only solutions are therefore (m,z,y) = (0,0,1) and
(m,0,0) where m > 1.
(AMM, Vol. 95, 1988, p. 141). These equations cannot be satisfied by
integers. Indeed, for each integer h, we have

0 (mod8) ifh=0 (mod4),
R2=¢{ 1 (mod8) ifh=1or3 (mod 4),
4 (mod8) ifh=2 (mod4).
We therefore have
0,1or4d (mod8) ifh=0 (mod4),
R+ k*={ 1,20r5 (mod8) ifh=1or3 (mod4),
0,40or5 (mod8) ifh=2 (mod4),

for each integer h and k. Hence, since {z + 1,z + 2,z + 3,z + 4} forms a
complete residue system modulo 4, the congruences

(z+1)+a?=(x+2? 4+ =(x+3)*+ P =(x+4)* +d°
=n (mod 8)

are satisfied only if n € {0,1,4} N {1,2,5} N {0,4,5}, which is impossible.
Verifying the parity, we easily notice that two of the three integers are
even, while the other is odd. Setting x = 2m, y = 2n and z = 2r + 1, the
equation becomes

4m? 4+ 4n? + 4r% + 4r + 2 = dmn(2r + 1),

which would mean that 4|2, which is nonsense. Hence, there are no solu-
tions.

If £ = 0, then from (%), y = +1; hence, because of (), we have y = 1. It
follows that (z,y) = (0,1) is a solution of the system. Similarly, (z,y) =
(1,0) is a solution of the system. Assume that  # 0 and y #0. If z > 1,
then 22% — 22 + ¢y = 22(2z — 1) + %2 > 22 + 4?2 > 1 +y? > 1, which
contradicts (*); hence < 1. Similarly, y < 1. By adding (%) and (*x),
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we derive that 23 + 43 = 1. If z < 0, then y > 1, which contradicts y < 1;
hence z > 0. Similarly, y > 0. We then have 0 <z <1l and 0 < y < 1.
By hypothesis, 223 — 22 + y? = 29> — y? + 22, so that o3 — 22 = ¢3 — 42,

Let u = y/z. It follows that 23 — 22 = 4323 — u?2? and therefore that

(1) r—1=u?(uz —1).

If u > 1, then u?(uz — 1) > uz — 1, which contradicts (1). Similarly, we
cannot have u < 1. It follows that w = 1 and therefore that y = z. It
then follows from (x) that 23 = 1/2 and therefore that x = y = (1/2)/5.
The only solutions of the system are therefore

1 1
(071)) (170)7 (mam> .

(MMAG, Vol. 52, 1979, p. 47). If one of the numbers is 1, the other
must also be equal to 1. Assume that (x,y) is a solution with x > 2 and
y > 2. Then, 2¥ = y* ¥ > 1 and therefore z > y. Dividing both sides of
the equation by yY, we obtain (z/y)Y = y*~ 2. Since x/y > 1, we have
(z/y)¥ = y*=2¥ > 1. It follows that  — 2y is a positive integer and thus
z/y > 2, so that (xz/y)¥ is a positive integer. This implies that z/y is a
positive integer. Since the function f(z) = 2* — 42 is strictly increasing
for x > 5, it follows that 2% > 4z and therefore for z/y > 5, we have

T _ /-2 9@/m-25 2

) )
a contradiction. On the other hand, when 2 < z/y < 5 we obtain that
x/y must be equal to 3 or 4. Since z/y = y®/¥)=2 it follows that by
choosing z/y = 3, we have y = 3 and z = 9, and choosing z/y = 4, we
have y = 2 and z = 8. Therefore, the only solutions are (1, 1), (9,3) and
(8,2).
(MMAG, Vol. 63, 1990, p. 190). Since 1 +z+ x> >0, 1+y+y? > 0 and
14 z+ 2% > 0, it follows that z,y, z are positive integers. Without any
loss in generality, we may assume that x > y > 2. Then, 2z(1 +z +z2) >
3(1 + x*), so that (z — 1)?(3x? + 4z + 3) < 0. Therefore, z = 1, which
yields the only real solution z =y =2z = 1.
(MMAG, Vol. 63, 1990, p. 190). This follows from the fact that any
integer n > 2 satisfies the identity (n2+n)! (n—1)! = (2 +n—1)! (n+1)!
and the chain of inequalities n? +n>n’4+n—-1>n+1>n—1.
Since m® = 0,1 or 8 (mod 9), it follows that

2 +4y24+23=0,1,2,3,6,70or 8 (mod 9).

We conclude that neither of these two equations is solvable in integers.
The answer is YES. Indeed, this Diophantine equation can be written
successively as

ot = 4y +4y+1-81,
zt 481 = 4 +4y+1,
et 430 = (2y41)3%

this last equation having integer solutions only if x = 0, in which case we
obtain 2y+1 = +9, that is y = 4 or —5. We then have only two solutions,
namely (z,y) = (0,4) and (z,y) = (0, —5).
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The answer is NO. Indeed, given an arbitrary integer a, we always have
a* =0or 1 (mod 5). Therefore, the only possible values of z* + y* + 2*
modulo 5 are 0, 1, 2 or 3. Since 363932239 = 4 (mod 5), there is no hope
for a solution.

The answer is NO. The reason is that (303,57) = 3, while 3 never divides
a®+1.

The answer is NO. Indeed, this Diophantine equation can be written as

et 424 = (2y +1)2

But we know that the Diophantine equation X* + Y% = Z?2 has integer
solutions only if X =0 or Y = 0. Here, Y = 2, and therefore X = 0. It
then follows that 16 = (2y + 1)?, which makes no sense.

The answer is YES. It is enough to take x =0, y = 1 and z = 9, in which
case we do have

ot 2y + 1) =0 434 =92

And this is the only solution in nonnegative integers.
Since 2% — y* = 8, we have (z — y?)(z + y?) = 8, which means that the
only two possible cases are

x—yzzl’ 1'—y2:2,
and

r+y*=8 T4yt =4
The first of these two systems has no solutions, while the second implies
that x = 3 and y = 1. The only positive solution of this Diophantine
equation is therefore (z,y) = (3,1).
Since 2% — y* = pq, we have (z — y?)(z + y?) = pq, which gives rise to the
systems of equations

z -y’ =1, z -y’ =p,
N and 9
T+ y*=pg T+yt=q
The second system has the solution

Y St T S o
2’ 2
which provides the following solutions to the Diophantine equation: x =
Brd g =42,
2 )

The first system implies that 2y%2+1 = pq = p(p+8); that is 2y?+17 =
(p+4)? with p+8 prime. This last equation may have solutions depending
on the value of p. When p = 3 with ¢ = p+8 = 11, we obtain the solutions
x = +7 and y = £2, and therefore we have found in this case more than
one solution.

The answer is NO. Indeed, this Diophantine equation can be written as

N | o

:4’

(z4+1)2*+ (y+2)? = —42+3.

Assume that this equation has a solution (z,y, z). Since the left-hand side
of this equation is congruent to 0, 1 or 2 modulo 4, while the right-hand
side is congruent to 3 modulo 4, we have reached a contradiction.



300

(853)

(854)

(855)

(856)

(857)

(858)
(859)

1001 PROBLEMS IN CLASSICAL NUMBER THEORY

The answer is NO. This follows immediately from the fact that, since the
geometric mean is no larger than the arithmetic mean (see Theorem 5),

4, .4 4 4
x 24 u
FYE A (atytatt) 4 = oy,
The answer is NO. To prove it, we use the method of infinite descent of
Fermat. Indeed, assume that this Diophantine equation has solutions. Let
x = xg be the value corresponding to the smallest positive value of x for
which this equation has a solution, say (o, ¥o, 20). We then have

(1) x5 + 2y = 425.

It is clear from (1) that 2|x3, which implies that 8|z3; hence z¢ = 2X for
a certain positive integer X. The equation can therefore be rewritten as
8X3 + 2y3 = 423, that is

(2) 4X3 +yd =223

It follows from (2) that 2|y3 and therefore that 8|y3, and equation (2)
becomes 4X3 + 8Y3 = 223, with 2Z = 2, that is

(3) 2X3 +4y3 =23

It follows from (3) that 2|z and therefore that 8|z3, and equation (3)
becomes 2X° + 4Y3 = 823, that is

X% +2v3 =428,

which is not possible, since we would have thus obtained a solution (X,Y, Z)
to the equation x3 + 2y% = 423, with 0 < X < xzg, thereby contradicting

the minimal choice of zg.

If m=4k+7, 0<r <3, then m? = 0,1 or 4 (mod 8). Consequently,

22 +9y2=0,1,2,4 or 5 (mod 8) while 8z +7 =7 (mod 8). Therefore, we

conclude that this Diophantine equation has no integer solutions.

We may assume that the numbers z and y are not divisible by 7. Con-

sequently, these numbers are of the form 7k + 1, 7k + 2 or 7k &+ 3. Since

(Tk £1)% = 7(Tk® £ 2k) + 1, (Tk £ 2)2 = 7(Tk® £ 4k) + 4, (Tk £ 3) =

7(7Tk? £ 6k + 1) + 2, it follows that

(Tk+ D) ="M +1, (Tk+2)*=7TN+2, (Thk+3)=7K+4
and therefore that
2t +44=1,2,3,4,5,6 (mod7),

while 722 = 0 (mod 7). Hence, equation z* + y* = 722 has no integral
solution.

For the second equation, the answer is again NO. In this case, we only
need to reduce the given equation modulo 5.
We easily see that the left-hand side of the equation is congruent to 0, 2
or 4 modulo 8, while the right-hand side is congruent to 5 or 6 modulo 8.
It follows that the equation has no integer solutions.
We have 2" = 222772 = z"72(22 + y%) > 2™ + y", a contradiction.
We write the initial relation as

X3 +3yY3 =925
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We proceed by contradiction by first assuming that amongst all the so-
lutions with Z > 0, the smallest one (in Z) is z,y,2. From the above
equation, we derive that x is a multiple of 3, and we write x = 3n,
which we immediately substitute in the relation. We then obtain that
9n3 + 93 = 323, which implies that y is also a multiple of 3. We then set
y = 3m, which gives rise to the relation 9n® + 27m? = 323, which in turn
implies that 3n% +9m3 = 23. Hence, z = 3k and 3n% 4 9m? = 27k3, which
is equivalent to n® + 3m3 = 9k3. But this relation is of the same form as
the initial equation. But k£ = z/3, which contradicts the minimal choice
of z.

The answer is NO. Indeed, since p|z, we can set z = zop for some positive
integer zo. Substituting in the original equation, we obtain the equation

p’zy +y* +p2t = pPwt.
This equation implies that p|y. As above, we then write y = yop, which
yields the equation

p%é +p3y3 + 2* = pw.
It follows that p|z. Hence, write z = zp, giving rise to the equation
pag + pPyg + p’ag = w',
This implies that p|w. Writing w = wop, we obtain
g+ py + P72 = powt.
Now, this equation is of the same type as the original equation, but the in-
tegers g, Yo, 20, Wo are respectively strictly smaller than x,y, z, w. There-
fore, the method of infinite descent of Fermat then guarantees that the
original equation has no integer solution.
We proceed by contradiction by assuming that such a solution z,y, z ex-

ists, with positive integers x,y, z. First assume that x is odd and that y
and z are even. We have

22 +y*+22=1 (mod4) while 2zyz=0 (mod 4),

which makes no sense. Similarly, x and y cannot be odd with 2z even.
We can then finally show that x,y, 2z are odd. We have thus arrived at
the conclusion that the three integers x,y, z must be even, say x = 2z,
y = 2y1, 2 = 221, so that

o3 +yf+ 2 =412 =0 (mod 4),

which again implies that z1, y; and 2; must in turn be even. Continuing
this process, we build triples (z2,y2, 22), (z3,ys,23), ... delivering each
time smaller and smaller even integers, which is impossible. This proves
that there exist no integer solutions z, y, 2.

Let (z,y) be a solution of

(1) m3 +y3 — xz +y2.
If x = 0, we find the two solutions (z,y) = (0,0) and (z,y) = (0,1). On
the other hand, if x # 0, set a = y/z. Since, from (1), we always have

y # —z, it follows that a # —1. Substituting y = az in (1), we find

T = }i—‘;; Similarly, substituting £ = y/a in (1), we find y = %ﬁ We
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have thus established that any solution (z,y) of (1) with & # 0 is of the

form
9 _lrae -urae) ~1).

(2) e s L Bl B (a#-1)
Reciprocally, one easily verifies that (2) produces a solution (z,y) of (1).
(Problem due to Leo Moser). We will provide a particular solution. Set
x1 = 2 and then, for each r, 2 < r < mn, let

_1+a? a(l+ a?)

Ty = 21T9 " Tp—1 + 1.

Of course the equation is satisfied for n = 1. Hence, assume that the set
{z1,22,...,2,} satisfies the equation for n = r; we will show that the
corresponding set with n = r 4 1 satisfies the equation as well. But for
n=r+ 1, we have

1 1 1 1 1
—_  — 4+ + =1 - —
T X2 Tr+1 Z1X2: - Tryl T1Z2 " Tr
1 1
+
Tr41 T1T2 - Tr41
1 Tr41 -1 1 1T
=1+ -t =1+ —~ T =1,
Tr41 T1X2 " Tr41 Tr41 T1- " TrTry1

as required.

REMARK: The sequence 2,3,7,43,1807,3263443, ... is also the subject
of Problem 479.

We proceed by contradiction by assuming that such a solution z, y, z exists
with positive integers z,y, z. First assume that z is odd and that y and 2
are even. We thus have

22 +9y*+22=1 (mod4) while z%?=0 (mod 4),

which makes no sense. Similarly, one can show z and y cannot be odd
while z is even. Finally, one can show that z,y,z cannot be odd. We
therefore arrive at the conclusion that all three integers z,y, z must be
even, say = = 2xy, y = 2y1, 2 = 221, so that we have

2 +yf+2f =dalyf =0 (mod 4),

which again implies that z, y; and z; must also be even. Continuing, we
construct triples (za,y2, 22), (*3,ys,23), ... each time made up of even
numbers getting smaller and smaller, an endless process, which makes no
sense. This argument implies that there is no integer solution z,y, z.
Assuming that x is even or odd, we reach a contradiction.

(Problem introduced by Johann Walter). Assume that such odd integers
x,y, z exist. Then

(2% 4+ 2zy + ) + (2 + 222 + 2%) = % + 2y2 + 22
and therefore
? +xy+ Tz =1yY=z.

By adding yz on each side, we obtain

(%) (z+y)(z+2) =2z,
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which is impossible because each of the expressions = +vy and =+ z is even,
so that the left member of (*) is divisible by 4, while its right member is
not, y and z being odd.

One easily checks that z = (s2 — pr?)/2, y =rs, 2 = (s> + pr?)/2 is a
solution. Conversely, if z,y, z is a primitive solution, then y? = (2 —z?)/p
and thus p|(z + z). Setting s> = z ¥ x and r? = (2 + z)/p, we obtain the
result.

Let n,m € N. Setting z = n(n? — 12m?), y = m(4m? — 3n?), we obtain
z = n? + 4m?, which yields infinitely many solutions.

The only solutions are (z,y,n) = (0,0, n) (with arbitrary n) and (z,y,n) =
(2,2,1). Indeed, first consider the case n = 1. The equation z + y = zy
becomes x = (x— 1)y, which means that z = 0 (and y = 0) or that z— 1|z,
or in other words that x —1 = 1 or —1 (since £ — 1 and z are two consecu-
tive integers). If z—1 =1,thenz =2andy =2. fz—1 = —1,thenz =0
and y = 0. The second case is the one where n > 2. If z and y are posi-
tive, assume that x > y > 0; we then have zy = 2™ +y™ > 2" > 22 > zy,
a contradiction.

Let us now examine the case where at least one of z,y is negative;
clearly both cannot be negative. Assume that £ < 0 and y > 0. If n
is even, we are back to the above case. On the other hand, if n is odd,
n > 3, then we can write z = —a, with @ > 0, and say y = b. Then, the
equation z" + y™ = zy becomes a™ — b™ = ab. Setting a = b+ r, we have

a®" — b =(b+7)" —b" >nb" " lr 4+ (Z) b~ 2r? > 3b%r + 3br?
> b% + br = ab,

a contradiction.

Since z > max(z,y), we derive from the equation that n”|n¥ and n¥|n®.
Consequently, £ = y and it follows that z =z 4+ 1 and n = 2.

Assume that w > max{z,y}. Then, n®|n™. Since n*|n*, we have n®|n¥.
By the symmetry of the problem, we also have n¥|n®. Therefore, x = y
and the equation we need to solve is reduced to (¥) 2n* + n* = n*. In
this case, we derive that n*|2n®, so that 2n® % is an integer for z < w.
If n > 2, then x = w and (%) becomes 3n” = n*, which implies that
n = 3 and the solution is ¢ = y = w = z — 1. For n = 2, the solution is
r=y=w—-1=2z-2.

(Contribution of A. Ivié, Belgrade). Assume that the equation zP+y? = 2"
has a solution in positive integers z,y,2. Let A=aP, B=y?, C =2z", so

that
Il r= I p=]] p<av=

p|ABC plzPydz" plryz

But since z < 2"/P, y < 2'/9, then according to the abc conjecture, for all
€ > 0, there exists a positive constant M = M (e) such that
1+e

2" < M- H p =M - (zyz)"*c < M- (Z'r)(1+5)(%+%+%).
p|ABC
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If z > zy, we obtain
1 1 1
1§(1+s)(—+—+—),
p q

which contradicts (x) for ¢ sufficiently small.
In order to prove the result, we first observe that if 1 < a < b < ¢ are
three consecutive integers, then ac + 1 = b?.

Now, since ac, 1 and b? are relatively prime, it follows from the abc
conjecture that, for each € > 0, there exists a positive constant M = M ()
such that

14
(%) B2 < M - (v(abe)) 't < M - (\/abc> < M- B3F/2,

where v(n) stands for the product of the prime numbers dividing n and
where we used the fact that ac < b2. It then follows from () that

b(1—36)/2 < M.

Choosing ¢ small enough, we find that b as well as ¢ and ¢ are bounded,
which proves the result.
Assume that the number m = n3 + 1 is powerful. Then, according to the
abc conjecture, we have that for each € > 0 there exists a positive constant
M = M(e) such that

m < M -y(mn3)tte
where (a) is the product of the prime numbers dividing a. Since (m,n) =
1, v(m) < /m and n < m'/3, it follows that

m< M- ,y(nm)1+s <M. (m1/3m1/2)1+s =M. m5(1+5)/6’

so that X
%

<M.

Taking ¢ sufficiently small, we find that m is bounded, which proves the
result.

The numbers n = 2 and n = 23 are the two smallest numbers (and
possibly the only ones) such that the corresponding number n3 + 1 is
powerful: 23 +1 =32 and 23 +1=2%.32.132
Assume that z,y, 2 are three 4-powerful numbers relatively prime and
verifying x + y = z. We apply the abc conjecture to the triple (z,y, z) so
that

2 < Mo r(ays) e < M- (ay2) /A < M09/
It follows that

1
me

LA-39)/4 < or
and therefore that z is bounded, and similarly for x and y.
Let a + b = ¢, where ¢ is 4-powerful and where a and b are 3-powerful,
(a,b) = 1. For each £ > 0, we have ¢ < M(e) - y(abc)!T¢. By hypothesis,
we have

y(a) < a3, A(b) <3 A(c) < V3,

which implies that, using the abc conjecture,

1+¢
c < M(e) (a1/3b1/301/3) < M(e)(c11/12)1+5,
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an inequality which cannot hold if ¢ is sufficiently small and ¢ large enough.
This clearly proves that only a finite number of such a, b, ¢ integers can
exist.
Let y > 0 be fixed and let £ > 0 be fixed and sufficiently small. Let also
P1,D2, - - -, Pr be the list of all prime numbers < y. If P(p? — 1) < y for a
certain prime number p, then there exist nonnegative integers oy, ..., a,
such that

pP—1=pf"-ppr
and therefore

p?=pit - pl + L
It follows from the abc conjecture that for all € > 0, there exists a positive
constant M = M(e) > 0 such that

p> < M- (pip2---prp)t e,

so that
pl—e <M. (p1p2 .. _pr)1+5 < M- yT(HE)-

Since ¢ is small and r = w(y) is fixed (as well as y), it follows that p is
bounded, and the result is proved.

REMARK: For each odd prime number y < 19, here is the conjectured
value of the largest element p, = p.(y) of the set of prime numbers A,:

y=13 5 7 11 13 17 19
p.= |17 31 4801 4801 8191 388961 1419263

Let us mention that although P(p? — 1) > 11 for each prime number
p > 4801, the largest prime number p such that P(p? —1) = 11 is p = 881
(in fact P(48012 — 1) = 7). For the other prime numbers y listed above,
we have P(p2 — 1) = y.

Since p = 1 (mod 4), we have ¢ = 1 (mod 8), so that (%) =1 and there-
fore, by Euler’s Criterion,

-1 = 9% = (g) =1 (mod q).

On the other hand, since
n—1=pg—1=2p>—p—1=(p—1)(2p+1) and 2P"'=1 (mod p),
it follows that
gn—1 = (21’—1)27"+1 =1 (mod p),
2"l = (21’—1)2""Ll =1 (mod q),

which implies that 2"~! = 1 (mod pq), as required.
First we define the function

Mo(e) = roax M(9),
which is decreasing for all € > 0 and is such that M(e) < My(e) for each

e>0.
It follows from the abc conjecture that, for ¢ = 1,2, 3,

2 < M(e/3) - (Y(z12223)) /% < Mo(e/3) - (Y(z17223)) 773
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and therefore that

w2923 < Mo(e/3)° - (y(z1223))°**.
Hence, if the conclusion (*) is false, then

zi > Mo(e) v(z:)*™®  (1=1,2,3)
and therefore

T1T2Z3 > M0(€)3 : (7(-’131x2273))3+6,

in which case we would have
Mo(f)3 '7($1$2$3)3+E < 112223 < Mo(i‘?/3)3 "Y($1$2$3)3+E7

and therefore
My(e) < My(e/3),

which is impossible since My is decreasing.

(880) (Math. Intelligencer 18 (1996), p. 58). It is false. Indeed, choosing
n =3,z =10, y =16, 2 = 17, we obtain a contradiction. This counter-
example is due to Roger Apéry, the famous mathematician who proved
the irrationality of ((3) =Y oo, 1/n3.

(881) From Wilson’s Theorem, we have (p — 1)! = —1 (mod p) so that

(p—1!+1
P

§=

is an integer .

It follows that

P11 _ (p-1)! oot Fe-Dt

T

Hence,
(r€)? = (T@—l)!/m)“l n (T(P-l)!ﬂn)a? oot (T@fl)!/ar)“ﬂ

The result follows by setting

n=r¢t and z;=r®" VY% for ;= 1,2,...,r
(882) From Wilson’s Theorem, (p — 1)) = —1 (mod p) and this is why
p—1'+1

£

is a positive integer. It follows that

(26)P = 2= DML = 9= 1! 4 9(e-D)! (2<p—1>!/<p—1>)”'1

n (2(p—1)!/(p—1>>”‘1 '
The result then follows by choosing
T = 2(1’—2)!’ y= 2(p=2)! » =9,

(883) It is all the prime numbers p satisfying one of the congruences p =
1,5,7,9,19,25,35,37,39,43 (mod 44).



SOLUTIONS 307

(884) (a) This congruence has the solutions z = +1 (mod 3).

(b) This congruence has no solutions, because 2 = 1 (mod 3) for each
integer z such that (z,3) = 1, while 22 = 0 (mod 3) if 3|z.

(¢) This congruence can be modified as follows:

2 +4x+4 = —4 (mod 3),
(x+2? = -1 (mod3),
v> = -1 (mod 3),

a congruence which is of the form (b) and therefore has no solutions.

(d) This congruence can be modified as follows:

22 +8c+16 = -1 (mod 17),
(x+4)? = -1 (mod 17),
yv> = —1 (mod 17),

a congruence which has solutions, since 17 =1 (mod 4). In fact, a solution
is given by y = %! = 8! =13 (mod 17), which implies that z = y—4 =
9 (mod 17). The other solution is therefore y = 17 — 13 = 4, that is
r=y—4=0 (mod 17).

(885) Multiplying the congruence by 8, we obtain successively

162 +24z +8 = 0 (mod 7),

1622 +24z+9 = 9-8 (mod7),
(4x+3)2 = 1 (mod7),
v> = 1 (mod?7),

a congruence which has solutions, namely y = 1 and 6 (mod 7). To find
the corresponding values of z, we must solve separately the congruences

4dz+3=1 (mod7) and 42+3=6 (mod7).

The solutions are z = 3 (mod 7) and z =6 (mod 7).
(886) Let N = (11)2 + (2!)2 + -+ + (n!)2. Then,

N=(1)?+@2N)2+ 32+ (4)?*=617=2 (mod 5).
If there exists a positive integer m such that m? = N, then m? = 2

2
(mod 5); and since <S> = —1, then 2 is a nonquadratic residue (mod 5).

Hence, there exist no integers m such that m? = N.

(887) The congruence n? + 1 =0 (mod p) has solutions only if p =1 (mod 4).
Hence, p must be of the form p = 4¢ + 1. On the other hand, since 3 does
not divide n? + 1 whatever the positive integer n, we must have that any
prime divisor of n is also of the form 3m =+ 1.

But a number that is of the form 4¢ 4+ 1 and also of the form 3m + 1
is of the form 12k 4+ 1. On the other hand, a number which is of the form
4¢ + 1 and of the form 3m — 1 is of the form 12k + 5. Hence, the result.

(888) The quadratic residues modulo p are congruent to 12, 22,..., ((p—1)/2)?,
so that

(-1 _plp+1p-1)

12 492 4 ...
+2°+-- + 7 24
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Since p # 2,3, it follows that p divides the sum of the quadratic residues
modulo p.
By hypothesis, we have ¢ = —1 (mod 8). It follows that

2
(0
q
Therefore, by Euler’s Criterion, we have that
- 2
P — 2% = (E) =1 (mod q).
We then have ¢|2P — 1 = M,,. To prove the second part, we observe that
p=4-280664+3 and ¢q=2p+1=2245319

and that g is prime. By the first part, we may then conclude that 2 245 319
divides Mj 122659 and therefore that Mj 122659 is composite.

Since 9239 = 7 (mod 8), we have ( = 1. Using Euler’s Criterion,

9239
we have that

9239

and therefore 9239|2619 — 1.
Let p = 6™ + 1. Then, p = 2 (mod 5), and using the law of quadratic
reciprocity, we have

()= s=(2) =

In order to have 1997k — 1 = n2, we must have n? = —1 (mod 1997).
But 1997 = 1 (mod 4), so that | —

1:(2)s%m (mod 9239),

1997
integer n exists. In fact, for n = 412 and k = 85, the equation 1997k —1 =
n? is verified.

Assume that there exist only a finite number of such numbers, say q1, g2,
...,qr, and then consider the number N = (2q1g2---¢,)? + 3. It is clear

that we have

) = 1, which confirms that such an

N=4+3=1 (mod 3),
so that N is of the form 3k +1. Hence, if N is prime, the proof is complete
because we will have found a prime number of the form 3k + 1 larger than

g-. If N is composite, we can prove that each of its prime divisors is of
the form 3k + 1. Indeed, if p|N and p =2 (mod 3), then

(2q192 - ¢-)* +3=0 (mod p),

which would mean that the congruence 22 = —3 (mod p) has a solution
for a prime number p = 2 (mod 3), in which case we would have

()= ) () Gen - ()-() -

a contradiction. This is why N (being odd and nondivisible by 3) must
have a prime divisor p = 1 (mod 3), in which case p = ¢; for a certain
i € [1,7], which means that ¢;|3, a contradiction.
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(894) The answer is NO. Let K = 11+2!+-.-+kl. Then, K = 114+2!+3!+4! =3
(mod 5). Hence, if K = n?, we must have n? = 3 (mod 5), which is
impossible since 3 is a nonquadratic residue modulo 5.

Another solution is as follows.

Since the last digit of k! is 0 for each k > 5, the last digit of the
number on the left-hand side is 3 for each k > 5. Obviously, if K = n?,
then n must be an odd number. Since the last digit of an odd perfect
square must be 1, 5 or 9, there are no solutions for k£ > 5. Examining the
cases for k < 4, we obtain that there are exactly two solutions, namely
k=n=1and k=n=3.

(895) (AMM, Vol. 85, 1978, p. 497). Assume that A, = 2" — 1 divides B,, =
3" — 1 for some integer n > 1. Clearly, 3f/B,. If n is even, then 3|A,.
Therefore, n must be odd, say n = 2m — 1, m > 2. Since 22"~ ! = 0
(mod 4) and 2?2™~! = 2 (mod 3) for each m > 2, we have 4, = -5
(mod 12). Since each prime number > 3 is congruent to +1 or %5
(mod 12), there exists at least a prime divisor p of A, such that p = 5
(mod 12). Since p|3B, = 3?™ — 3, it follows that 3™ = 3 (mod p), that
is that 3 is a quadratic residue modulo p. On the other hand, in light of
the law of quadratic reciprocity, since p = +5 (mod 12), we have

©)@-cr s

so that, for a certain integer r > 0,

©)-0)-(22)-()- ()
(896) The answer is YES. Indeed, we have
(2)-(=2%)- () - () ) - ()
(897) The answer is YES. Indeed, we have
(2)- G- ()= (3) -+

(898) This congruence will have solutions if each of the following two congru-
ences has solutions:

z2=52 (mod3) and 2?=52 (mod 53).

The first can be written as 2 = 1 (mod 3) and therefore has solutions.
The second one can be written as z2 = —1 (mod 53) and has solutions
since 53 =1 (mod 4). The stated congruence is therefore solvable.

(899) The answer is YES. Indeed, since p — 2¢ = 1, we have,

(8)=(5)ews = (2) o= (7)
-(57)=(3) =+
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(900) Let ¢ = 2?7 — 1 be a Mersenne prime (where p is an odd prime). Then
% =21 1 and ¢ =1 (mod 3), so that

(3)- @ @) -~(3) -

2
(901) Since p = 7 (mod 8), it follows that (5> = 1, which means that there

exists o such that 2 =2 (mod p). Raising both sides of this congruence

to the power pT_l, we obtain

(%) (3)"F =27 (mod p).

Since, from Fermat’s Little Theorem, we have xg_l =1 (mod p), it follows
from (*) that

l=ab'= ot7 (mod p),
thus the result.

(902) The answer is NO. Indeed, we first observe that 231 = 3-7-11. Thus, for
the congruence z? = 2 (mod 231) to have solutions, we must have that
each of the congruences 22 = 2 (mod 3), 2 = 2 (mod 7) and 2? = 2
(mod 11) is solvable. But the first and third of these congruences are not
solvable, since (2) = —1 and (&) = -1.

(903) The answer is NO. Indeed, since p = 100k+3 = 3 (mod 4), the congruence
22 = —1 (mod p) has no solutions.

(904) The answer is YES. Indeed, solving the problem boils down to finding
whether the congruence z? + 14z + 47 = 0 (mod 23) has solutions. But
this congruence can also be written as 2% + 14z + 49 = 2 (mod 23), that
is
(%) (x+7)%?=2 (mod 23).

Since (%) = 1, it means that the congruence y? = 2 (mod 23) has solu-

tions, and so does (x).
(905) The answer is NO. It is enough to prove that the congruence

(%) 22 —32x-1=0 (mod 541)
has no solutions. But this congruence is successively equivalent to
42 — 122 -4 = 0 (mod 541),
(2 —3)> = 13 (mod 541).

But the congruence y? = 13 (mod 541) has no solutions. Indeed,

(8)-(28) o= ()= (3) oo

(906) The answer is YES. Indeed, since p = 24k + 1, we have that % is even

and therefore that
_1)% <§> — (?ﬁ)
p p

G - G)6)-
B = (¢)=(3) -

—~
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(907) The answer is NO. Indeed, since 4™ + 1 =2 (mod 3), we have

B)-@or-@-(5)-() -~

(908) First observe that if p is odd, then

(5)- (@) evs = = () o

This last expression is equal to 1 if any one of the following situations
occurs:

(i) (&) =1land p=1 (mod 4),

(ii) (&) =-1and p=3 (mod 4).
One easily checks that (i) takes place when p = 1,3,4,5,9 (mod 11) and
p =1 (mod 4), that is when p = 1,5,9, 25,37 (mod 44); while (ii) takes
place when p = 2,6,7,8,10 (mod 11) and p = 3 (mod 4), that is when
p = 7,19,35,39,43 (mod 44). Finally, when p = 2, we have 2 = 2
(mod 44) and it follows that 2 € A. Therefore,

A={1,2,57,9,19,25,35,37,39,43}.

()=(8)={ ! fr=zl (mots)

it follows that (1—5)) = —1 if and only if p = +2 (mod 5).

(910) W have (2) = (122) - () - (1)
(2) = (252) = (22 = oo (2),

and since (p—1)/2 = (g—1)/2+ 2a, it follows that (p—1)/2 is even if and
only if (g—1)/2 is even. Consequently, (—1)®=1/2 = (—1){(p=1)/2)((a=1)/2)
in which case

(0)-()- Q=)

(911) They are the prime numbers p = 1,3 (mod 8).
(912) We have that

(909) Since

and

2
(5) = (—1)(”2‘1)/8 =1 < p=+1 (mod8) <= z?=2 (mod p)

2
has solutions. Since (—) =2(P~1/2 =1 (mod p), we have
p

243 =1 (mod 8n + 7).

This shows that 263 is a divisor of the Mersenne number 2131 — 1.
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For the congruence z2 = 1237 (mod 2717) to have solutions, the three

1237 1237 12
expressions (%), (—%) and (%) must be equal to 1. But the

last two expressions are equal to —1. It follows that the given congruence
has no solutions.

-1
We must have | — | = +1. Therefore, the required numbers are the

prime numbers p satisfying p = 1 (mod 4).
It has no solutions since

131313\ _ /19 \ (2 _
1987 J \1987) \19)

(Sierpinski, [39], Problem #193) Assume that an integer solution {z,y}
exists. Clearly, y > 0. We then consider separately the cases “y even”
and “y odd”. First of all, if y is even, there exists a positive integer k
such that y = 2k, in which case 22 = 8k3 + 7, which is impossible since
no perfect square has this form. If y is odd, there exists a positive integer
k such that y = 2k + 1. We then have

1=y + 2 =+ -2+ 4=y +2)(y-1)°+3)
= (2k + 3)(4k* + 3).
It follows that () (2k)? + 3|z2 + 1. Since (2k)? + 3 certainly has a prime
divisor of the form 4n + 3, it follows from () that 22 + 1 also has a prime
divisor p of the form p = 4n + 3. But this is impossible since in this
case the congruence z2 = —1 (mod p) would be solvable, which is not so
because (_71) =-1

The number 15 is a quadratic residue modulo p if and only if (g) (g) =

1. Since

3y _J +1 ifp=+41 (mod12),
p) | -1 ifp=45 (mod12)

and

5) _ [ +1 ifp=+1 (mod}5),
p) | -1 ifp=+2 (modS5),

we conclude that

15\ _ f +1 if p=+1,£7,£11,+17 (mod 60),
p) | -1 ifp=+13,£19,4+23 429 (mod 60).

Since (%’) - (%) (g) we can write
1)@=/ _1)(a-1)/2
(5 -(55)6)

Using this same identity, we have

_1\(g=1)/2 1\ (@—1)/2
(ﬁl);—> = (71) = (1= T,

which gives the result.
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34561
19) It has t luti — | = +1.
(919) as two solutions, because (1234577> +

(920) Let 7 be a quadratic residue modulo m and let k be such that
k*=7 (mod m).
By Euler’s Theorem (see Theorem 22),
kM =1 (mod m).

Combining these two equations and using the fact that ¢(m) is even for
m > 2, we have

r¢(m/2 = (k2)$(m)/2 = |#0m) = 1 (mod m),

as required.

(921) Since a™ —1 = 0 (mod (a™ — 1)), we have a" = 1 (mod (a™ — 1)). It
follows that the smallest number r such that a” =1 (mod (a™ — 1)) is n,
which implies that n|¢(a™ — 1).

(922) Since there are as many quadratic residues as quadratic nonresidues, the
result follows.

(923) Since (k,p) = 1, there exists an integer 1 < k¥’ < p — 1 such that kk' =1
(mod p). Therefore,

(52 (452 (£22)-(5)
and
()£ (5)-56)-0)

In light of Problem 922 and the fact that (%) =1, the result follows.

(924) Assume that no two consecutive integers are quadratic residues mod-
EN(k+1
ulo p; then (—) (L> = —1 for each positive integer k. Hence,
p

p

Wg—;—l)— = —1 for each positive integer k, which contradicts the state-
ment of Problem 923. A similar argument is used to prove that no two
consecutive integers are quadratic nonresidues modulo p.

(925) Assume that 5p + 1 = a?, in which case a®> = 1 (mod 5), a solvable
congruence. We then have 5p = (a — 1)(a + 1), which is possible only if
a = 6 or 4. Hence, the possible prime numbers p are p =7 and p = 3.

As for the second question, it is easy to see that there exist no such
prime numbers p.

(926) (T.M. Apostol [1], page 201). Since F = {k | k =0,1,...,p— 1} is a
complete residue system modulo p, A = {ak +b |k =0,1,...,p— 1} is
also a complete residue system modulo p if (a, p) = 1. Moreover, ak+b=r
(mod p) implies f(ak + b) = f(r) (mod p) and therefore

(252 (),
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To prove the second part, we set f(z) = z in the first part, in which

case, we obtain
1 p—1
k+b Z k
(a + ) - <_> - O'
0 p k—o \P

o (k) = { 1 (g) — g and (%) s,

0 otherwise,

p

£
Il

Set

b= aplk)
k=1

k
Since (a? =% = 1) and a,(k) =0 if ( ) # a or ( + 1) # b, it follows
p

that
ap(k):%<1+a<g>> ( (’““))
Therefore,
N(a,b) = §<1+a<§)+b<%)+ab<§> (%))
= Z 11+aZ=1 (S) +bZ:1 (%) +ab’; (g) <k;1)

we obtain that
4N(a,b) :p—2—b—ab—a<——1>,
p

and in particular,

p—4—(—1)P-1/2
1 .

It is sufficient to observe that <l> = (u)

N(1,1) =

p p
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(929) Since p — k runs through all the numbers 1,2,...,p — 1 as k runs through
these same numbers, it follows that

() - So-n () -So-n ()
N

e-9(3)()

Therefore,
p—1 p—1 p—1
k ’ k . k
k <_> ISV <_> NS k(_>
k=1 \P PRI 4 k=1 NP
p—1 k
Since (5) =0 for p=1 (mod 4), the result follows.
k=1
(930) Since p=1 (mod 4), we have
p—1 p—1 p—1 p—1 p—1
k= ) (-k=) @-k=p ) 1-> &
k=1 k=1 k=1 k=1 k=1
(F)=r (5= (5)=1 )= )=
Using the fact that there are (p — 1)/2 quadratic residues, we obtain that
p—1
j_p-1t
2
k=1
(5
and therefore that
p—1
-1
5 ko p(p2 )
k=1
(5=

(931) We have

52e()-Ep(252) B ()

k=1 k=
p— p—1 p—
k
= - (p2*2pk+k2)(ﬁ)=2pzk<ﬁ>‘zk2(_)v
k=1 p k=1 p =1 p

and the result follows if p = 3 (mod 4).

(932) If there exists a solution, then z2? = 5+ 33y?; that is 2 =5 (mod 33) and
in particular 2 = 5 (mod 3). Since 5 is a nonquadratic residue modulo
3, we conclude that there is no integer solution.

(933) The continued fractions are [1,2] and [0, 1, 2].

(934) (a) x=—-26,y=65; (b)x =3,y =2.

(935) It is easy to see that it is the number 1+ 2v/2.
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(936) We have

1 1 1
_:0+_:0+ :[0,(11,(12, ]
a 1
ay + —
(937) The convergents of /5 are
9 38 161 682
CZ_Zy C3*ﬁ7 C4—ﬁ7 05_%

The rational number 682/305 will therefore serve our purpose.
(938) The result can easily be obtained by induction on n.
(939) This comes from the fact that az? = bx + ¢ and therefore that
b ¢l b + 1
r=—4+—-——=—4+ .
b 1
a az a 5 1
c z

(940) Tt is obvious that the two roots are (5 + v/57)/4 and (5 — v/57)/4. Using

5 5
Problem 939, we have that a root is given by [5, Z] We obtain the
following convergents:

33 205 1289
Cy = T 33, C3= 6 3.106, Cy= 0 3.143,
8085 50737
= — A _1 = —R ].
Cs 9578 3.136, Cs 16170 3.1377,

and we can say that one of the roots is approximately 3.14. Since the sum
of the roots is 5/2, the other root is approximately —0.64.
(941) We only need to observe that

vni+l—n= ! = L
n+vn2+1 2n+vn2+1-n

2n

1

1 .
+
n+vn2+1-—n

(942) Since n —1 < v/n? —1 < n, it is clear that [v'n? — 1] = n — 1. Therefore,

VvnZ—-l=n—-1+vn2-1-(n—-1)=n—-1+ !

Vn2 =14 (n-1)
2n -2
Since
\/n2—1+(n—1)_1+ 1
2n — 2 (@ -2)+ VRl —1-(n-1)

the result follows.
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(943) The result follows using the fact that

1 1
n2+2—n= =
Vn?+2+mn)2 1
n2+2+n
_ 1
- 1
n

+
2n+vVn?+2-n
(944) For n > 2, we have n — 1 < v/n? — 2 < n, in which case

1
1) vVn2-2=n—-14++vVn?2-2-n+1l=n-1+ ,
L vVnZ—-2+n-1

2n—3

vni—-24+n-1
2n—3

1
2) Vn?f-2=n-1+4
@ 1+\/n2—2—n+2

2n—3

and since 1 < < 2, equation (1) becomes

1

=n-1+ 1

1+
vn?—24+n-—2
2

Since n —2 < < n— 1, equation (2) can be written as

vVn?—24+n-2
2

1
3) vVn?2-2=n-1+ T

1+

Vn?—24+4n-2
2n -3

(4) Vn?2—-2=n-1+ 11

Since 1 < < 2, (3) becomes
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Since 2n —2 < vn2 —2+n—1<2n — 1, that is

Vn2—-2+n—-1=2n-2++vn?2-2—-n+1,
it follows that
1
vn2—-2=n-1+ T

1+
1
n—2+

1
2n—2+4(vn?2-2-n+1)

and we obtain equation (1), thus the result.

Since 38 = 62 + 2, it follows by Problem 943 that /38 = [6,
47 = 7% — 2, we have by Problem 944 that v/47 = [6,1,5, 1, 12
since 120 = 112 — 1, it follows by Problem 942 that \/ﬁ
Since n < vn? +n < n+ 1, we have

1
vVni4+n=n+vVn2+n-n=n+ —m—.
vn2+n+n

n

1+

]. Since
Flnally,

20].

12
]

vnZ+n+n .

Since the integer part of ————— is 2, it follows that
n

1 1
vn2+n=n+ 1 =n+ T ;
24— 2+
vVni+n+n 2n+vVn24+n—n

and the result follows.
For n > 1, we have n — 1 < v/n2 — n < n, and therefore

1
1) vVn2—n=n—-1++vn2-n-n+l=n-1+ .
) vni-n+n-1

n—1

Vn? — -1
Since 2 < Y- " _En < 3, it follows that (1) can be written as
n f—

1
(2) vni—-n=n—-1+ i
2+
vn?—n+n-1
Since 2n —2 < vVn? —n+n—1 < 2n — 1, it follows that (2) becomes
1
Vn2—-n=n-1+ T ,
2+
2n—2+4+(yn2-n-n+1)

and using (1), we get the result.
Forn>1,3n < v9n? +3 < 3n+1, so that

(1) VIn2+3=3n+vMmM2+3-3n=3n+ —————

1
VOn2+3+3n’
3
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o2
Since 2n < w < 2n+ 1, it follows that (1) takes the form
1 1

2) VIn?2+3=3n+ =3n+
@ oy VON2+3—3n 9 + 1

n+ 3 VIn? +3 +3n
Since 6n < vV9n? + 3 +3n < 6n + 1, (2) becomes

1
VIn?+3=3n+ T
2n +

6n + (vV9n2 + 3 — 3n)
Using (1), we get the result.

The representations of ¢ + 1 and ¢ — 1 are
g+1 = [2,1,2],
q— 1 = [Oa 1’_2]

It follows that if we let go be the number [1,2], then we have

q+1 = [2,q9]=2"qo,
1
q—1 = [0,q]=—.
d0
Therefore, (¢ +1)(g— 1) = 2, so that the required number is r = ¢ = v/3.
The infinite continued fraction of 7 is [3,7,15,1,292,1,1,...]. This way,
we build the following table:
n|01 2 3 4 5 6
an 3 7 15 1 292 1

pn |1 3 22 333 355 103993 104348
g, |0 1 7 106 113 33102 33215

and p4/qq is the best rational approximation of 7 amongst all the rational
numbers whose denominator does not exceed 1000.
Since e = [2,1,2,1,1,4,1,1,6,1,1,8,1,...], we have the table

nl0 123 4 5 6 7 8 9 10 1
| 212 1 1 4 1 1 6 1 1
Po|1l 2 3 8 11 19 87 106 193 1264 1457 2721

g |0 1 1 3 4 7 32 39 71 465 536 1001

and p19/q1o is the best rational approximation of e amongst all the rational
numbers whose denominator does not exceed 1000.
Since v/5 = [2,4], we have the table

nl0 12 3 4 5 6
an| 2 4 4 4 4 1
pn|l 2 9 38 161 682 2889
g |0 1 4 17 72 305 1292

and ps/qs is the best rational approximation of v/5 amongst all the rational
numbers whose denominator does not exceed 1000.

The number 9976/6961 will serve the purpose.

The number 1264/465 will serve the purpose.
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(953) The convergents of n are

(954)
(955)

3 22 333 355 103993

1’ 77106’ 113" 33102 "’
and we thus find

sl 11
"7 113| T 11333102 T 106
A good approximation is 4.3589.
‘We have

0 <la/b—pr/a|l <la/b—al + |a—pr/a| < 2l — pe/gk] < 2/qkqr+1-

(956)

(957)

(958)
(959)

(960)

(961)

Multiplying these inequalities by bgy, we obtain 0 < |agr —bpr| < 2b/qk+1-
Since |agy, — bpk| is a positive integer, we must have 2b/qx1 > 1, in which
case b > qxy1/2.

Since v/3 = [1, 1, 2], we have the table
n | 0

1 2345 6 7
an 11212 1 2
pn|l1 1 25 7 19 26 71
¢ 0 1 1 3 4 11 15 41

and therefore

V3 — a/b| < V3 — pe/qel-
It follows from Problem 955 that b > ¢7/2 = 20.5, and this is why b > 21.
We have
a_Pr| | Br !
b gk @G| r+1
Multiplying this last equation by bgx, we obtain 0 < |agx — bpk| < b/qri1-
Since |agy —bpx| is a positive integer, we have b/gr+1 > 1, that is b > gg11.
This follows immediately from Problem 957.
Observe that if |7 — a/b| < |7 — 333/106|, then by Problem 955, we have
b > 113/2 = 56.5 (since the convergent following 333/106 is 355/113). If
b < 56, we have |7 — 333/106] < |7 — a/b|.
We shall prove this inequality using induction. We have

0< <

<‘a

q3:a2a3+122221, q4=a2a3a4+a2+a423223/2.

Assume that the inequality is true for some n and let us prove it for n+ 1.
Using the hypothesis induction, we have

n_1
dn+1 = Qn+14n +qn—-1 Z dn +qn—1 Z 2272 42

which proves the result.

Since for n > 1, we have ppgn—1 — qgupn—1 = (—1)", it follows that
Prn—4qn—3 — Gn—4Pn—3 = (—1)", and therefore it is enough to show that
for n > 4, we have

PnQn—3 — GnPn—-3 = (_1)n(anan—1 + 1)

This result can then easily be obtained by induction on n.



(962)

(963)

(964)

(965)

(966)

(967)

SOLUTIONS 321

Let
1 ' n— n—
o= [al,ag,...,an_l + _/] _ a/p1—+p2’
@ a'Gn-1+ qn_2
1 ﬂ’pn-l +pn_2
ﬂ: [al,ag,...,an_ + _] =2fn-1 7 n-2
' ’BI ﬁ/Qn—l +qn_2

Set o =an,+a"’, 3 =b, + 6", where 0 < o <1, 0 < 3’ < 1. We then
obtain that

B - =bp—a,+8" - >1+5"-a" >0.

Hence,
a—f = &' Pr_1+ Pn—2 B B'pp—1 + Pn—2
&1+ G2  Bn-1+qn2

_ (al — ) (Prn-1Gn—2 — Pn—2qn-1)

- (aIQTL—l + Qn—2)(ﬂIQn——1 + qn~2)

_ (B —a ) (-1 _ [ <0 ifnisodd,

(1 F Gn2)(B'Gn1 + Guz) { >0 if niseven.
Let 0 = [d1,dy,d3,...], where dyj_1 = cpj—1 and dgj = by;. If o :=
[a1, a2, a3,...] < 6, then using Problem 962, we see that if k is the first

position where 6 differs from «, then ax < di for k odd and ar > dj
for k even. If k = 2n, then ay, > ds, = bg,, while if ¥ = 2n — 1, then
agn—1 < dopn—1 = Cap—1, Which contradicts our hypothesis. In this case,
we must have a > 6. The inequality on the right can be obtained in a
similar manner.

Using Problem 963 with ¢, = 1 and b,, = 2 for each n > 1, we obtain

1+2\/§=[1,_2]§a§[ﬂ=1+\/§.

Since 20926/86400 = [0,4,7,1,3,5,64], we easily find the convergents

1 7 8 31 163 10463

4’ 29’ 337 128’ 673" 43200
Although 97/400 is not a convergent of 20926/86400, it is easy to see, in
this case, that 8/33 provides a better approximation than 97/400. This
means that by adding 8 days every 33 years would provide a better ap-
proximation than adding 97 days every 400 years. Finally, observe that
the fourth convergent 31/128 (which could be obtained for example by
removing a leap year every 128 years) provides the length of an actual
year with a precision of four decimals.
We only need to expand this determinant with respect to the last column
and then use induction on k. The value of gx can be obtained from pj by
crossing out the first column and the first row.

Let « = [a1,az,---,an) = [a1,a2,...,an,¢]. Let px/qr be the k—th con-
vergent of «, so that
_ apn + Pn-1
agn + dn-1 '

We therefore have a quadratic equation in a:

qna2 + (qnfl - pn)a —Pn-1+= 0.
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Since « is not rational, the expansion of the continued fraction is infinite
and « is a quadratic irrational number.

Let @ = [ay,az,...,an,b1,b2,...,by] and let 8 = [b1,ba,...,by]. In light
of Problem 967, /3 is a quadratic irrational number. If py/qx is the k—th
convergent of «, then

_ ﬁpn + Pn-1
Ban + Gn—1 .
Since pp—_1, Pn,gn—1 and ¢, are nonzero rational numbers and 3 is a qua-
dratic irrational number, we have that « is a quadratic irrational number
or simply a rational number. Since « is an infinite continued fraction, it
follows that « is a quadratic irrational number.
If pn/qn is the n—th convergent of a, then
o = PnCn + Pn-1
AnCn + Gn—1.
Substituting this value of « in aa® 4+ ba + ¢ = 0 and rearranging the
coeflicients, we obtain

Anai + Bpon +C,, =0,

o= {alaaQa"-aanaﬁ]

where A,, B, and C,, are defined in the statement of the problem. Ele-
mentary computations allow one to obtain

B2 — 4A,C, = (b* — 4ac)(Pngn-1 — GnPn_1)* = b* — 4dac.

For the second part, we observe that, since f(«) = 0 and since this number
«a is located between p,_1/¢n-1 and pp /¢y, it follows that the values of
f at these points must be of opposite signs, the reason being that the
other root of this quadratic equation is not located between p,_1/qn—1
and pp/qn,. This shows that A,C, < 0.

Let a, be a root of A, 2%+ B,z +C, = 0, where the coefficients are given
in the statement of Problem 969. Since

1
|thn _pn| < —,
q

n
we can write .
pn:aqn+q—, le] < 1,

n
(where &, of course, depends on n). Substituting this value in the expres-
sion of A,,, we have

n n

2
€ 5
A = a<aqn+> +b(aqn+q—)qn+cqi
= (aa2+ba+c)qz+<2aa+b+a—§>~5
q

= <2aa+b+ a_;) ‘€.
qn
Therefore, we have |A,| < |2ax + b| 4 |a|, which implies that all the A,’s
are built from a finite set of integers. Since C,, = A,,_1, we obtain a result
similar for C,,. Moreover, we have

B2 —4A,C, = b* — 4ac,
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and then

B2 = |4A,,C,, + b* — dac| < 4{|2ac + b| + |a|}? + |b* — 4dac|,
which means that the B,’s are bounded. Since there exist only a finite
number of choices for A,, B, and C,, we conclude that there exist only a
finite number of distinct polynomials A,z? + B,z + C,, = 0 each having
«, as a root.

Let a = [a1, ag, ..., an,a,] be a quadratic irrational number. Since each
a, is a root of one of the quadratic equations

A1z? + Biz + C; =0,
Asz? + Box +Cy =0,

Anz? + Byz +Cn =0,
one of these polynomials must have at least three of these a;,’s as a root
(from Problem 970, the triple (A,, B,, C,) therefore takes infinitely many
times the same value). Since a quadratic equation can have at most two
distinct roots, it follows that two of the «a,’s must be equal, say ap =
Qk+m- From the algorithm outlined in the proof that an irrational number
can be written as an infinite continued fraction, we have

Ak+1 = Ck+m+1s Ak+2 = Cktm+2y -+ Ak+j = Aktm+j, -+
Hence,
o = [alaa2a'-'1akvak+la e aak+m]'

3 VB 3
We have #_3 o1 1<37YB % — 1,813

24+4V7>1, —-1<2—7T<0and2+V7=[41,1,1);
5+ V3T _ 5— /37 5+37
2T Vol U=

1, —1<T<Oand 3,1,2].

Assume that vD = [a1,a2,a3,...,]. Since a; is the largest integer smaller
than /D, it follows that a;+vD > 1 and —1 < a;—v/D < 0. Then, using

the result stated in Problem 972, we have that a; + v/D is represented by
a periodic continued fraction. Hence,

a1 +VD = [2a1,a2,a3,...,an]
VD = —ay+ [2a1,az,0a3,...,an]
VD = —a; + [2a1,a2,a3,...,an,2a1 ]
VD = [a1,a0,a3,...,an,,2a;1].

(CRUX, 1988, solution by Ed Doolittle). First of all, we observe that the
binary representation of /2 contains infinitely many 1’s

V2 =1.01101...

(otherwise, from some point on, we would have only 1’s, thereby implying
that v/2 would be rational). In base 2, multiplication by 2 moves the dot
by one position to the right, so that

2v2=10.1101...,  2%/2=101.101...,
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and so on. Since v/2 contains infinitely many 1’s, there exist infinitely
many integers n such that the binary representation of 27v/2 has a “1” to
the right of the dot, with eventually another “1” to its right (since there
are infinitely many 1’s). It follows from this that the fractional part of
2"/2 exceeds 0.10000 = 1.

Using the notation {z} for the fractional part of z, we have thus
proved that there exists a set A C N containing infinitely many integers
n such that 1

{2"Vv2} > 5
Since 1 — % < %, we have that if n € A,

{2"v2} > 1- %,

in which case

% > 1 - {2"V2}

0<(1-{2"V2})vV2<1.

Since [m + z] = m if m is an integer and z € (0,1), we can write
2714 (1 - {2V} Va] =2+,
Since 2"*! = /2(2"v/2), we have
("2 +1- {2V2pve] = 2+,
which we can write as
|(2"V2 - {2V} + 1)v2] = 2L,
Since we always have z — {z} = [z], this last relation can be written as
[(2rva] +1)v2] =2m+,
Finally, since [z] + 1 = [z + 1], we have
[27V2 + 1v2] = 2+,
This last relation means that if k = [2"v/2 + 1], then
[kv2] = 2",

a power of 2. Since the distinct values of n give distinct values for &, the
infinite set A generates the desired infinite sequence of powers of 2.
It is clear that it is enough to prove that

and therefore

2
e ABl<r—Va
r+1
But this follows from the fact that
r+2 3 (r+2)—V2r+1)| (V2-1r-Vv2|
—_ 2 frng =
r+1 r+1 r+1

< (V2-DIr=V2 <|r—v2|
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REMARK: If 0 < 7 € Q is given as an approximation of v/3, it is easy to

prove that the number % represents a better approximation.

(976) (a) We have that 676 = 22 - 132, Hence, v/676 = 26 is a rational number.
(b) Let zo = /75 + v/2. We have 2y = 5v/3 + /2. Since z = 2 is not
an integer and is a solution of the equation z* — 154z% + 772 — 600 = 0,
it follows that it must be an irrational number.

(977) We have a =2%-3,b=5-72,c=3-11%2,d = 3-5%. It follows that

(a) vab = 141/15, an irrational number
(b) y/ac = 66, a rational number

(c) (6ad)!/3 = 30, a rational number
(d) log 12, an irrational number.

(978) If z is rational, say z = a/b with a,b € Z, b # 0, then mlz = mla/b is
an even integer for each integer m > b+ 2, in which case cosm!lzr = 1
and therefore (cosmlzm)® =1 for n > 1, m > b+ 2. This proves that
f(z) = 11if z is rational. On the other hand, if z is irrational, then mx is
never an integer whatever the value of the integer m > 1, in which case
we always have |cos(m!mz)| < 1, so that |cos(m!mz)|™ tends to O when
n — oo. It follows that (cos(m!mz))™ tends to 0 when n — oo, and the
result is proved.

(979) Assume that such a solution z = ¢, with (a,b) = 1, exists. In that case,
we obtain

a® = 10b% — ab*.

But since b divides the right-hand side of this equation, it must also di-
vide a®, which means that (a,b) > 1, thereby contradicting the initial
hypothesis and establishing the result.

(980) Let zo = a/b, with (a,b) = 1. The equation becomes % + 7% + s = 0,
which implies that a? 4 rab + sb? = 0. It follows from this last equation
that bla?, which is possible only if b = 1, because (a,b) = 1. Therefore, it
follows that zq € Z.

(981) The answer is: for p = ¢ and m = —n or, of course, for m = n = 0, but
in no other cases. Indeed, if p # g, then if m,/p + n,/q were an integer,
we would have that (m./p + n,/q)? = m?p + n’q + 2mn,/pq would also
be an integer, in which case 2mn.,/pq would also be an integer, which is
not possible, because /pq is irrational.

(982) (This is Theorem 137 in the book by Hardy and Wright [18].) If the
number « were rational, there would be a period in the decimal expansion
of a. In this case, we observe that the digit 1 appears at positions r, r +s,
r+2s, ... . There would therefore exist a function f(n) = sn+r such that
f(n) is prime for each sufficiently large integer n. But no polynomial with
integer coefficient, which is not constant, can be prime for each sufficiently
large value of n (see De Koninck and Mercier [8], page 31).

(983) Let z = /p+ ,/q. Then,

= p+q+2ypg
! (p+9)* +4pg + 4(p + 9)v/P4,
et = p®+¢*+6pg+4(p+q)Vpu,
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so that
2t —20p+q)2* =p* +¢* +6pg —2(p+9)(p+9) = —(p — 9)*.
Therefore, the real number x satisfies
et —2(p+q)a® + (p—¢)° = 0.

Calling upon Theorem 44, the result follows.

2

1
It is clear that « = 1 + —, in which case a* — &« — 1 = 0, meaning that
@

1
a = t \/5 On the other hand, one easily establishes that 4% = 3 + 1,

so that § = a. By substituting these values in the given equation, we
easily obtain that t = 2.

Let o = 21/3 4+ 31/3, Then, z —2'/3 = 31/3 and this is why (2 —2'/3)3 = 3.
Expanding this last equality, we obtain

x3 —32%2.2Y/3 1 32.92/3 _2=3

and therefore successively

-5 = 32%.2Y3 —3z.2%/3,
-5 = 31'21/3(2—21/3),
-5 = 3z.2Y33/3

(® =53 = 6-3.2°

an expression which can be reduced to
2% — 152°% — 872 — 125 = 0.

We have thus proved that x is a root of a polynomial of degree 9 with
integer coefficients, and this is why we may conclude that this number z
is irrational, since of course it is not an integer.

The answer is YES. Indeed, assuming that there exist a and b € N such

that logo2 = %, we would have 10%/® = 2, so that 10% = 2°, which would

imply that 5|2, which is nonsense.
Let £ = . Then,

Lo ol _lph-ag 1
> |g b bg T bq

so that ¢? < bg and therefore that 1 < g < b. There are therefore a finite
number of possible choices for ¢ and hence a finite number of possible
choices for 1 < p < g. There are therefore only a finite number of choices
for p and q.
Let 0 = {%g—g. Assume that 6 is algebraic; we will show that a contradiction
will follow. Indeed, if such is the case, then, using a result of Gel’fond and
Schneider, we have that 2¢ is transcendental. Since it is clear that 2¢ = 3,
an algebraic number, a contradiction follows.
Of course, it is enough to show that if m = a/b, with (a,b) =1, a,b > 0,
then m = 1. But if the number
2 12
m+ i =2 o
m ab
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is an integer, then a|a?+b? and bla® + b2, which implies that a|b? and b|a?.
Since (a,b) = 1, this means that a = b = 1 and therefore that m = 1.
Setting © = v/2 + /7, we obtain 22 = 9 + 2v/14 and z* = 137 + 36V/14.
Hence, the polynomial z*—18z2+25 = 0. It then follows from Theorem 44
that « is irrational. It is then of course an algebraic number.

We quickly notice that £ = z; = —1 is a root of p(z). Hence, p(z) =
(x4 1)(2? + 2 —1). Now the zeros of 2+ —1 =0 are 25 = £52_—1 and
T3 = _‘/25“1. Since the polynomial has only integer coefficients and since
Zo and z3 are not integers, it follows that they must be irrationals. We
have therefore found a rational root, namely z; = —1, and two irrational
roots, namely x5 and 3.

The answer is NO. Indeed, if such integers existed, that would mean that
ae3 + be? = 16 and therefore that e is an algebraic number, which is not
possible since it is transcendental.

The answer is YES. Indeed, if it did not contain any, we would have
that the interval I = [Z,2] contains only algebraic numbers. But this
interval contains an uncountable quantity of real numbers, while the set
of algebraic numbers contained in I is countable, which makes no sense.

2. . . o
The number \/5\/_ is either rational or irrational. In the first case, by
choosing o = § = /2, we have found two algebraic numbers «, 8 such
that o is rational, as required. It remains to consider the second case.

In the second case, by choosing a = \/5\/§ and 3 = /2, and observing
V2

that (\/5 =2, we have that of is rational, as required. Hence, in

both cases, we have obtained the required configuration.
(a) Let a,b,n € N and consider the function

(1) flz) = “’n(“n;!bx)n_

Observe that for 0 < z < a/b, we have

2n
(2) 0< flz) <

nlbn’

Using the Binomial Theorem, we have

fo =l L

n! n! 4

and setting 2n — j = m, we obtain

1 2n n 1 2n
_ 2n— - _
CEEDY (50 o)t = 3 e

where obviously the coefficients ¢, are integers.
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We have f(0) =0 and f*)(0) = 0 if k < n or k > 2n. Moreover, for
n < k < 2n, we find
!
100 = Ze
Hence, f(*)(0) is an integer for each integer k > 0, and since f(z) =
f(% —z), then f(k)(%) is also an integer for each k > 0.

The above remarks will now allow us to solve the problem. Observe
that if y is a rational number, that is y = 5, and if €¥ is a rational number,
then e® = €€ is also a rational number. Moreover, if e~¢ is rational, then
e? is also rational, and therefore it is enough to show that if m is a positive
integer, then €™ cannot be a rational number.

Assume the contrary, that is assume e™ = % where h,k € N, and
consider the function

Fla) = m*f(z) —m*" 7 f/(2) + - = mf@=D(z) + [ (),

where f(z) is the function defined above with a = b = 1. In this case,
F(0) and F(1) are integers and we have

% {e™ F(z)} = e™*{mF(z) + F'(z)} = m*"*1e™ f(z).

Consequently,

1

1
k/ m*tlem® f(z) = k(e™* F(z)) | dzx
0 0

= ke™F(1) — kF(0) = hF(1) — kF(0)

is an integer. Using (2), with a = b =1, we obtain

1 2n+1 1 2n,m
m km“"e
0< k/ m*Te™ f(z) dx < k / e dr < ————,
0 n!Jy n!

and since km?"e™ /n! < 1 for n sufficiently large, we obtain a contradic-
tion.

(b) Assume the contrary, that is that 7 = a/b, where a and b are positive
integers. Consider the function f defined by equation (1) in the solution
of (a) and consider the function

F(z) = f(z) = f"(z) + fP () + -+ (-1)"fC ().

Since f(0) and f(m) are integers (see the remarks on f(z) stated in the
solution of (a)), it follows that F'(0) and F(r) are also integers.
Since

%{F’(m) sinz — F(z)cosz} = {F"(z) + F(z)}sinz = f(z)sinz,

it follows that
/ f(z)sinzdz = {F'(z)sinz — F(z)cosz} | = F(0) + F(m).
0 0
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This integral therefore represents an integer. Using the equation (2) that
shows up in the solution of (a) for 0 <z < 7 = ¢, we have that
n

7
0 < f(z)sinz < —a",
n!

so that

n

0 </ f(z)sinzdz < W—'a”ﬂ.
0 n:

Since it is possible to choose n such that %a”w < 1, we obtain a contra-
diction.
Set y = log 2. We have of course

e¥ — elog2 — ea/b — 2’

a rational number. Hence, using Problem 995(a), we have, since e¥ is
rational, that y is irrational, thus the result. The same argument applies
for logr.

We easily show that the minimal polynomial is

3 3
3 2
-2 Sr—1.
z 2x+ z

The polynomial is
xt — 43 — 42% + 162 - 8.

It is an irrational number. Moreover, it is also algebraic and therefore not
transcendental. Let z = 21/2 + 31/3. We have = — 21/2 = 31/3_ 5o that
(x — 21/2)3 = 3 and also that, successively, z° — 322v/2 + 6z — 2v/2 = 3,
23 + 6 — 3 = (322 + 2)V2, (2% + 6z — 3)? = 2(32% + 2)2, 28 — 62 —
623 4+ 1222 — 36z + 1 = 0. Therefore, since z is not an integer, it must be
irrational and in fact algebraic (of degree 6).

Let p(z) be the polynomial

z°® + 3924 + 8322 + 32522 — 348z — 1924.

Since p(x) has integer coefficients, it follows from Theorem 44 that each
root of p(z) is an integer or an irrational number; therefore, each rational
root of p(x) must be an integer. We must therefore examine the divisors
of 1924 = 22 .37 - 13. We easily find that p(2) = p(—2) = p(—37) = 0, so
that

p(z) = (z — 2)(z + 2)(x + 37)(z? + 22 + 13),
and given that the polynomial x2? + 2z + 13 has only complex roots (its
discriminant being negative), it follows that the only rational roots of p(x)
arer =2, x=—2and z = —37.
Such a rational number does not exist, since if it did, it is easy to see
that the number 7 would then be a root of a polynomial of degree 5 with
integer coefficients, thus contradicting the fact that = is a transcendental
number.
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